二维B、N掺杂炭片的电化学氧化及其赝电容性能

Electrochemical oxidation of 2D B, N-codoped carbon nanosheets to improve their pseudo-capacitance

  • 摘要: 在炭基电极材料中引入氧化还原赝电容是提升其比电容的有效手段,有望解决炭基超级电容器低能量密度的瓶颈。本文通过原位电化学氧化,在B、N掺杂二维纳米炭片电极上引入电化学活性含氧官能团,以显著提升炭基电极的赝电容,并研究了B、N掺杂炭在不同氧化工艺下的表面组成和电容性能变化。结果表明,B、N掺杂可以提升氧化电极的电子传输和电荷转移,有效促进电化学氧化效果,提高电极的赝电容。此外,相比于恒压氧化工艺,循环伏安氧化方法可以有效提升炭电极的氧化深度和总氧含量,并且也有利于选择性地生成以电化学活性的醌基为主的含氧官能团。制备的氧化电极在1 A·g−1电流密度下显示出601.5 F·g−1的高比电容,并在20 A·g−1下仍保持74.8%,显示出良好的倍率性能。此外,氧化电极还表现出优异的循环稳定性,在5 A·g−1下8000次循环后保持了初始电容的92.6%。

     

    Abstract: Introducing redox pseudocapacitance could effectively improve the specific capacitance of carbon-based electrode materials, and is a promising way to overcome the low energy density of carbon-based supercapacitors. An in-situ electrochemical oxidation method was used to electrochemically generate active oxygen-containing functional groups for B, N co-doped carbon nanosheets to significantly increase the pseudocapacitance. Results show that the degree of oxidation, the pseudocapacitance, and the charge transfer rate of the oxidized carbon nanosheets were effectively increased by co-doping with B and N. Compared with the constant potential oxidation method, the cyclic voltammetry oxidation method was more effective in increasing the total oxygen content of the oxidized electrode and to selectively generate electrochemically active quinone groups. The oxidized electrode had a high specific capacitance of 601.5 F g−1 at a current density of 1 A g−1, retaining 74.8% of the original value at 20 A g−1, revealing a favorable rate capability. The oxidized electrode also had excellent cycle stability, retaining 92.6% of the initial capacitance after 8 000 cycles at 5 A g−1.

     

/

返回文章
返回