Abstract:
A novel pantograph carbon slider (PCS-1) was designed and prepared via mold pressing, hot extrusion and sintering using sulfonated graphene (SG) as additive. The results show that PCS-1 demonstrates an obvious enhanced mechanical strength and wear performances than that of carbon slider in the absence of SG (PCS-0). For example, the current-carrying wear test indicates that the flexural strength of PCS-1 is 41.8% higher than that PCS-0 counterparts. The wear rate of PCS-1 reduces 51.0% and 50.0% in the wet and normal conditions, respectively. Moreover, the presence of SG, as reflected in scanning electron microscopy, polarizing microscope and white light interferometer, can markedly decrease the number of random cracks, increase the compactness of fracture surface and inhibit the electro-erosion of the slider materials, thus improving the mechanical strength and wear resistance significantly.