留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synergistic Enhancement of Toughness and Viscosity of Carbon Nanotubes/Polyether Imide/Polyether Ether Ketone Nanocomposites

SONG Jiu-peng ZHAO Yan LI Xue-kuan XIONG Shu LI Shuang WANG Kai

宋九鹏, 肇研, 李学宽, 熊舒, 李爽, 王凯. 高韧性低粘度碳纳米管/聚醚酰亚胺/聚醚醚酮纳米复合材料的研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(22)60643-7
引用本文: 宋九鹏, 肇研, 李学宽, 熊舒, 李爽, 王凯. 高韧性低粘度碳纳米管/聚醚酰亚胺/聚醚醚酮纳米复合材料的研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(22)60643-7
SONG Jiu-peng, ZHAO Yan, LI Xue-kuan, XIONG Shu, LI Shuang, WANG Kai. Synergistic Enhancement of Toughness and Viscosity of Carbon Nanotubes/Polyether Imide/Polyether Ether Ketone Nanocomposites. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60643-7
Citation: SONG Jiu-peng, ZHAO Yan, LI Xue-kuan, XIONG Shu, LI Shuang, WANG Kai. Synergistic Enhancement of Toughness and Viscosity of Carbon Nanotubes/Polyether Imide/Polyether Ether Ketone Nanocomposites. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60643-7

高韧性低粘度碳纳米管/聚醚酰亚胺/聚醚醚酮纳米复合材料的研究

doi: 10.1016/S1872-5805(22)60643-7
详细信息
    通讯作者:

    肇 研. E-mail:jennyzhaoyan@buaa.edu.cn

Synergistic Enhancement of Toughness and Viscosity of Carbon Nanotubes/Polyether Imide/Polyether Ether Ketone Nanocomposites

More Information
    Author Bio:

    宋九鹏,博士研究生,主要研究方向为树脂基复合材料. E-mail:

    Corresponding author: ZHAO Yan. E-mail: jennyzhaoyan@buaa.edu.cn
  • 摘要: 聚醚醚酮(PEEK)具有良好的力学性能,但其较高的熔体粘度导致其加工困难,因而限制了它的应用。本文采用湿粉法制备了碳纳米管(CNTs)和聚醚酰亚胺(PEI)修饰的PEEK纳米复合材料,纳米复合材料的熔体粘度降低了约50%。CNTs和PEI的加入使纳米复合材料的韧性得到协同提高,当PEI含量为4.95wt%,CNTs含量为0.05wt%时,纳米复合材料的断裂延伸率提高了129%,拉伸断裂能提高了97%。通过该方法制备的纳米复合材料熔体粘度较低,均匀分散的CNTs/PEI可以在不影响耐热性的前提下有效降低PEEK纳米复合材料的加工难度。这种粉末共混改性的方法有望应用于热塑性复合材料的粉末浸渍工艺或激光烧结技术。
  • Figure  1.  Sample preparation, (a) The amination modification and in situ polymerization, and (b) CNT/PEI powder preparation and powder blending

    Figure  2.  Characterization of CNT-COOH and CNT-NH2, (a) Photographs of functionalized CNTs dispersed in anhydrous ethanol after different standing times. (b) FTIR spectra, (c) XPS survey spectra, (d) XPS spectra of CNT-COOH at C1s region, (e) XPS spectra of CNT-NH2 at C1s region, and (f) XPS spectra of CNT-NH2 at N1s region

    Figure  3.  Characterizations of CNTs/PEI, (a) FTIR spectra of CNTs/PEI, (b) TG curves of CNTs/PEI powder, (c) SEM image of PEI-0, (d) SEM image of PEI-1, and (e) SEM image of PEI-2

    Figure  4.  Rheological curves of PEEK nanocomposites, and (a) Viscosity vs. temperature at a shear rate of 0.016 Hz. (b) Viscosity vs. shear rate at a temperature of 390 °C

    Figure  5.  The tensile properties of the PEEK nanocomposites: (a) Tensile strength, modulus, and elongation at break (n = 6), (b) Tensile fracture toughness, and (c) Tensile stress–strain curve

    Figure  6.  (a) Flexural strength and flexural modulus (n = 6) and (b) Notched Izod impact strength (n = 6)

    Figure  7.  Cross-sectional SEM images of the tensile-fractured surfaces of the PEEK nanocomposites

    Figure  8.  Crystallization behavior of PEEK nanocomposites under POM: (a)–(d) P0, (e)–(h) P5, and (i)–(l) C5

    Figure  9.  Etching morphology of the PEEK nanocomposites: (a) C1 and (b) C5

    Figure  10.  Schematic illustration of the deformation behavior in PEEK nanocomposites: (a) The C1, C2, and C5 nanocomposites, (b) P0 nanocomposites. (c) P1 nanocomposites, and (d) P2 and P5 nanocomposites

    Table  1.   Compositions of the PEEK nanocomposite samples

    Sample namePEEK (wt%)CNTs (wt%)Addition
    P010000
    P199.950.050
    P299.90.10
    P599.750.250
    C09505 wt% PEI-0
    C19505 wt% PEI-1
    C29505 wt% PEI-2
    C59505 wt% PEI-5
    下载: 导出CSV

    Table  2.   Mechanical testing standards

    Group/shapeTestingSpeed (mm/min)Standards
    DumbbellTensile test1.0GB/T 1040.1-2018/ISO 527-1:2012
    RectangularFlexural test2.0GB/T 9341-2008/ISO 178:2001
    Notched sampleCharpy impact test-GB/T 1043.1-2008/ISO 179-1:2000
    Notched sampleSingle-edge notched bend test10ASTM D5045-14
    下载: 导出CSV

    Table  3.   Characteristic temperatures and crystallinity of PEEK nanocomposites

    Sample nameTi (°C)Tmax (°C)Tg (°C)Tm (°C)ΔHm (J/g)Xm (%)
    P0561586155.9347.754.0941.6
    P1566590154.6346.958.0944.7
    P2563591154.1346.453.8341.4
    P5566589157.4346.153.4941.2
    C0541566155.7346.147.1038.1
    C1546584159.9348.248.9539.6
    C2544580157.6345.150.4240.8
    C5542576153.6345.947.7238.6
    下载: 导出CSV

    Table  4.   Relevant studies on PEEK nanocomposites

    FillersFabrication methodsContent (wt%)Elongation at break (%)Increasement (%)Reference
    CNTsfused filament fabrication
    additive manufacturing
    12.4−22[48]
    graphene nanoplatelets33.512
    CNTs compatibilized with polysulfonesmelt blending0.1 (CNTs)13.27[45]
    graphene oxidemelt blending0.52586.3[19]
    TiO2melt blending34220[47]
    CNTs/PEIpowder blending0.05 (CNTs)93129This study
    下载: 导出CSV
  • [1] Shan-Shan Yao, Fan-Long Jin, Kyong Yop Rhee, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B:Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007
    [2] A Avanzini, C Petrogalli, D Battini, et al. Influence of micro-notches on the fatigue strength and crack propagation of unfilled and short carbon fiber reinforced PEEK[J]. Materials & Design,2018,139:447-456.
    [3] Yubo Tao, Fangong Kong, Zelong Li, et al. A review on voids of 3D printed parts by fused filament fabrication[J]. Journal of Materials Research and Technology,2021,15:4860-4879. doi: 10.1016/j.jmrt.2021.10.108
    [4] Ya-nan Su, Xing-hua Zhang, De-qi Jing, et al. Effect of surface functionalization on the surface and inter-facial properties of thermoplastic-coated carbon fibers[J]. New Carbon Materials,2021,36(6):1169-1176. doi: 10.1016/S1872-5805(21)60049-5
    [5] D. G. Papageorgiou, M. F. Liu, Z. L. Li, et al. Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets[J]. Composites Science and Technology,2019,175:60-68. doi: 10.1016/j.compscitech.2019.03.006
    [6] B. Nandan, L. D. Kandpal, G. N. Mathur. Poly(ether ether ketone)/poly(aryl ether sulfone) blends: Melt rheological behavior[J]. Journal of Polymer Science Part B-Polymer Physics,2004,42(8):1548-1563. doi: 10.1002/polb.20039
    [7] John W McLaughlin, Emma Tobin, Ronan M O'Higgins. An investigation of Polyether Imide (PEI) toughening of carbon fibre-reinforced Polyether Ether Ketone (PEEK) laminates[J]. Materials & Design,2021:110189.
    [8] Sandeep Kumar, Raghvendra K. Mishra, Tandra Nandi. Experimental and theoretical investigations of the high performance blends of PEEK/PEI[J]. Journal of Polymer Engineering,2017(4):351-361.
    [9] M. Rosa, L. Grassia, A. D'Amore, et al. Rheology and Mechanics of Polyether(ether)ketone - Polyetherimide Blends for Composites in Aeronautics, 8th International Conference on Times of Polymers (TOP) and Composites, Ischia, ITALY, 2016.
    [10] R. Gensler, P Béguelin, Cjg Plummer, et al. Tensile behaviour and fracture toughness of poly(ether ether ketone)/poly(ether imide) blends[J]. Polymer Bulletin,1996,37(1):111-118. doi: 10.1007/BF00313826
    [11] A Mt, A Dbk, B Ds, et al. A review on PEEK composites – Manufacturing methods, properties and applications [J]. Materials Today: Proceedings, 2020, 33(11).
    [12] Atefeh Golbang, Eileen Harkin-Jones, Marcin Wegrzyn, et al. Production and characterization of PEEK/IF-WS2 nanocomposites for additive manufacturing: Simultaneous improvement in processing characteristics and material properties[J]. Additive Manufacturing,2020,31:100920. doi: 10.1016/j.addma.2019.100920
    [13] M Bragaglia, V Cherubini, F Nanni. PEEK-TiO2 composites with enhanced UV resistance[J]. Composites Science and Technology,2020,199:108365. doi: 10.1016/j.compscitech.2020.108365
    [14] Ana M. Díez-Pascual, Mohammed Naffakh, Marián A. Gómez, et al. Development and characterization of PEEK/carbon nanotube composites[J]. Carbon,2009,47(13):3079-3090. doi: 10.1016/j.carbon.2009.07.020
    [15] Ana M. Díez-Pascual, Mohammed Naffakh, Carlos Marco, et al. Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review[J]. Current Opinion in Solid State and Materials Science,2014,18(2):62-80. doi: 10.1016/j.cossms.2013.06.003
    [16] Umesh Marathe, Meghashree Padhan, Jayashree Bijwe. Carbon nanotubes-A powerful nano-filler for enhancing the performance properties of polyetherketoneketone composites and adhesives[J]. Composites Science and Technology,2021,210:108813. doi: 10.1016/j.compscitech.2021.108813
    [17] F. Vahedi, H. R. Shahverdi, M. M. Shokrieh, et al. Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites[J]. New Carbon Materials,2014,29(6):419-425. doi: 10.1016/S1872-5805(14)60146-3
    [18] Binling Chen, Silvia Berretta, Ken Evans, et al. A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering[J]. Applied Surface Science,2018,428:1018-1028. doi: 10.1016/j.apsusc.2017.09.226
    [19] Miaomiao He, Xianchun Chen, Zhijun Guo, et al. Super tough graphene oxide reinforced polyetheretherketone for potential hard tissue repair applications[J]. Composites Science and Technology,2019,174:194-201. doi: 10.1016/j.compscitech.2019.02.028
    [20] Ni Wu, Sai Che, Hua-wei Li, et al. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications[J]. New Carbon Materials,2021,36(5):911-926. doi: 10.1016/S1872-5805(21)60089-6
    [21] Olawale Monsur Sanusi, Abdelkibir Benelfellah, Nourredine Aït Hocine. Clays and carbon nanotubes as hybrid nanofillers in thermoplastic-based nanocomposites–A review[J]. Applied Clay Science,2020,185:105408. doi: 10.1016/j.clay.2019.105408
    [22] Jonathan N. Coleman, Umar Khan, Werner J. Blau, et al. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites[J]. Carbon,2006,44(9):1624-1652. doi: 10.1016/j.carbon.2006.02.038
    [23] Meisam Shabanian, Mohsen Hajibeygi, Mehdi Roohani. Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties[J]. New Carbon Materials,2015,30(5):397-403. doi: 10.1016/S1872-5805(15)60199-8
    [24] Xiaohua Zhang. Carbon nanotube/polyetheretherketone nanocomposites: mechanical, thermal, and electrical properties[J]. Journal of Composite Materials,2021,55(15):2115-2132. doi: 10.1177/0021998320981134
    [25] Toshio Ogasawara, Terumasa Tsuda, Nobuo Takeda. Stress–strain behavior of multi-walled carbon nanotube/PEEK composites[J]. Composites Science and Technology,2011,71(2):73-78. doi: 10.1016/j.compscitech.2010.10.001
    [26] Bo Wang, Ke Zhang, Caihua Zhou, et al. Engineering the mechanical properties of CNT/PEEK nanocomposites[J]. Rsc Advances,2019,9(23):12836-12845. doi: 10.1039/C9RA01212E
    [27] Tonghua Wu, Xiaohan Mei, Liubo Liang, et al. Structure-function integrated poly (aryl ether ketone)-grafted MWCNTs/poly (ether ether ketone) composites with low percolation threshold of both conductivity and electromagnetic shielding[J]. Composites Science and Technology,2022,217:109032. doi: 10.1016/j.compscitech.2021.109032
    [28] Hanxiong Lyu, Naiyu Jiang, Yingze Li, et al. Enhancing CF/PEEK interfacial adhesion by modified PEEK grafted with carbon nanotubes[J]. Composites Science and Technology,2021,210:108831. doi: 10.1016/j.compscitech.2021.108831
    [29] Elwathig A. M. Hassan, Lili Yang, Tienah H. H. Elagib, et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B:Engineering,2019,171:70-77. doi: 10.1016/j.compositesb.2019.04.015
    [30] Li Lin, Yuntao Han, Xiaohan Zhao, et al. Effectively improving the performance of MWNT/PEEK composite by choosing PAK-Cz as the solubilizer[J]. High Performance Polymers,2019,31(8):875-884. doi: 10.1177/0954008318804045
    [31] A. M. Diez-Pascual, M. Naffakh, C. Marco, et al. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles[J]. J Phys Chem B,2012,116(27):7959-69. doi: 10.1021/jp3035314
    [32] Ana María Díez-Pascual, Gerardo Martínez, María Teresa Martínez, et al. Novel nanocomposites reinforced with hydroxylated poly(ether ether ketone)-grafted carbon nanotubes [J]. Journal of Materials Chemistry, 2010, 20(38).
    [33] Ali Nabipour Chakoli, Jin Mei He, Yu Dong Huang. Collagen/aminated MWCNTs nanocomposites for biomedical applications[J]. Materials Today Communications,2018,15:128-133. doi: 10.1016/j.mtcomm.2018.03.003
    [34] Sathyajith Ravindran, Sumit Chaudhary, Brooke Colburn, et al. Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications[J]. Nano Letters,2003,3(4):447-453. doi: 10.1021/nl0259683
    [35] B. C. Janegitz, R. Pauliukaite, Mariana E. Guica, et al. Direct electron transfer of glucose oxidase at glassy carbon electrode modified with functionalized carbon nanotubes within a dihexadecylphosphate film [J]. Sensors & Actuators B Chemical, 2011, 158(1).
    [36] Ye Chen, Jing Tao, Alaa Ezzeddine, et al. Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes[J]. C,2015,1(1):58-76.
    [37] He-nan Mao, Xiao-gong Wang. Use of in-situ polymerization in the preparation of graphene / polymer nanocomposites[J]. New Carbon Materials,2020,35(4):336-343. doi: 10.1016/S1872-5805(20)60493-0
    [38] M. N. Disfani, S. H. Jafari. Assessment of intertube interactions in different functionalized multiwalled carbon nanotubes incorporated in a phenoxy resin[J]. Polymer Engineering and Science,2013,53(1):168-175. doi: 10.1002/pen.23244
    [39] DS Bangarusampath, Holger Ruckdäschel, Volker Altstädt, et al. Rheology and properties of melt-processed poly (ether ether ketone)/multi-wall carbon nanotube composites[J]. Polymer,2009,50(24):5803-5811. doi: 10.1016/j.polymer.2009.09.061
    [40] Ana M. Díez-Pascual, Mohammed Naffakh, José M. González-Domínguez, et al. High performance PEEK/carbon nanotube composites compatibilized with polysulfones-I. Structure and thermal properties[J]. Carbon,2010,48(12):3485-3499. doi: 10.1016/j.carbon.2010.05.046
    [41] Alicia C Martin, Nishant Lakhera, Amy L DiRienzo, et al. Amorphous-to-crystalline transition of Polyetheretherketone–carbon nanotube composites via resistive heating[J]. Composites Science and Technology,2013,89:110-119. doi: 10.1016/j.compscitech.2013.09.012
    [42] Ekaterina, Pavlenko, Franois, et al. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite[J]. Journal of Applied Physics,2014,115(23):234901-234901. doi: 10.1063/1.4883299
    [43] R. , Zhu, and, et al. Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites [J]. Materials Science & Engineering A, 2007, : .
    [44] A. M. Diez-Pascual, A. L. Diez-Vicente. High-performance aminated poly(phenylene sulfide)/ZnO nanocomposites for medical applications[J]. ACS Appl Mater Interfaces,2014,6(13):10132-45. doi: 10.1021/am501610p
    [45] Ana M. Díez-Pascual, Mohammed Naffakh, José M. González-Domínguez, et al. High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties[J]. Carbon,2010,48(12):3500-3511. doi: 10.1016/j.carbon.2010.05.050
    [46] JA Puértolas, Miguel Castro, JA Morris, et al. Tribological and mechanical properties of graphene nanoplatelet/PEEK composites[J]. Carbon,2019,141:107-122. doi: 10.1016/j.carbon.2018.09.036
    [47] M. Bragaglia, V. Cherubini, F. Nanni. PEEK -TiO2 composites with enhanced UV resistance[J]. Composites Science and Technology,2020,199:108365. doi: 10.1016/j.compscitech.2020.108365
    [48] MF Arif, H Alhashmi, KM Varadarajan, et al. Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing[J]. Composites Part B:Engineering,2020,184:107625. doi: 10.1016/j.compositesb.2019.107625
    [49] D. X. Sun, C. J. Yang, X. D. Qi, et al. Largely enhanced fracture toughness of the PP/EPDM blends induced by adding carbon nanofibers[J]. Composites Science and Technology,2018,164:146-152. doi: 10.1016/j.compscitech.2018.05.048
    [50] Hong Ma, M Ali Aravand, Brian G Falzon. Synergistic enhancement of fracture toughness in multiphase epoxy matrices modified by thermoplastic and carbon nanotubes[J]. Composites Science and Technology,2021,201:108523. doi: 10.1016/j.compscitech.2020.108523
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  202
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-13
  • 修回日期:  2022-08-02
  • 网络出版日期:  2022-08-23

目录

    /

    返回文章
    返回