Synergistic Enhancement of Toughness and Viscosity of Carbon Nanotubes/Polyether Imide/Polyether Ether Ketone Nanocomposites
-
摘要: 聚醚醚酮(PEEK)具有良好的力学性能,但其较高的熔体粘度导致其加工困难,因而限制了它的应用。本文采用湿粉法制备了碳纳米管(CNTs)和聚醚酰亚胺(PEI)修饰的PEEK纳米复合材料,纳米复合材料的熔体粘度降低了约50%。CNTs和PEI的加入使纳米复合材料的韧性得到协同提高,当PEI含量为4.95wt%,CNTs含量为0.05wt%时,纳米复合材料的断裂延伸率提高了129%,拉伸断裂能提高了97%。通过该方法制备的纳米复合材料熔体粘度较低,均匀分散的CNTs/PEI可以在不影响耐热性的前提下有效降低PEEK纳米复合材料的加工难度。这种粉末共混改性的方法有望应用于热塑性复合材料的粉末浸渍工艺或激光烧结技术。Abstract: Polyether ether ketone (PEEK) has favorable mechanical properties. However, its high melt viscosity limits its applications because it is hard to process. In this study, PEEK nanocomposites modified with carbon nanotubes (CNTs) and polyether imide (PEI) were prepared using a direct wet powder blending method. The melt viscosity of the nanocomposites decreased by approximately 50%. Under optimal conditions, the addition of CNTs and PEI resulted in a synergistic increase in the toughness of the nanocomposites. The elongation at break increased by 129%, and the fracture energy increased by 97%. The uniformly dispersed CNTs/PEI powder reduces the processing difficulty of PEEK nanocomposites without affecting the heat resistance. The nanocomposites prepared by this method have lower melt viscosity. This improvement of the properties of PEEK would facilitate its use in the preparation of thermoplastic composites by powder impregnation or laser sintering technology.
-
Figure 2. Characterization of CNT-COOH and CNT-NH2, (a) Photographs of functionalized CNTs dispersed in anhydrous ethanol after different standing times. (b) FTIR spectra, (c) XPS survey spectra, (d) XPS spectra of CNT-COOH at C1s region, (e) XPS spectra of CNT-NH2 at C1s region, and (f) XPS spectra of CNT-NH2 at N1s region
Table 1. Compositions of the PEEK nanocomposite samples
Sample name PEEK (wt%) CNTs (wt%) Addition P0 100 0 0 P1 99.95 0.05 0 P2 99.9 0.1 0 P5 99.75 0.25 0 C0 95 0 5 wt% PEI-0 C1 95 0 5 wt% PEI-1 C2 95 0 5 wt% PEI-2 C5 95 0 5 wt% PEI-5 Table 2. Mechanical testing standards
Group/shape Testing Speed (mm/min) Standards Dumbbell Tensile test 1.0 GB/T 1040.1-2018/ISO 527-1:2012 Rectangular Flexural test 2.0 GB/T 9341-2008/ISO 178:2001 Notched sample Charpy impact test - GB/T 1043.1-2008/ISO 179-1:2000 Notched sample Single-edge notched bend test 10 ASTM D5045-14 Table 3. Characteristic temperatures and crystallinity of PEEK nanocomposites
Sample name Ti (°C) Tmax (°C) Tg (°C) Tm (°C) ΔHm (J/g) Xm (%) P0 561 586 155.9 347.7 54.09 41.6 P1 566 590 154.6 346.9 58.09 44.7 P2 563 591 154.1 346.4 53.83 41.4 P5 566 589 157.4 346.1 53.49 41.2 C0 541 566 155.7 346.1 47.10 38.1 C1 546 584 159.9 348.2 48.95 39.6 C2 544 580 157.6 345.1 50.42 40.8 C5 542 576 153.6 345.9 47.72 38.6 Table 4. Relevant studies on PEEK nanocomposites
Fillers Fabrication methods Content (wt%) Elongation at break (%) Increasement (%) Reference CNTs fused filament fabrication
additive manufacturing1 2.4 −22 [48] graphene nanoplatelets 3 3.5 12 CNTs compatibilized with polysulfones melt blending 0.1 (CNTs) 13.2 7 [45] graphene oxide melt blending 0.5 25 86.3 [19] TiO2 melt blending 3 42 20 [47] CNTs/PEI powder blending 0.05 (CNTs) 93 129 This study -
[1] Shan-Shan Yao, Fan-Long Jin, Kyong Yop Rhee, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B:Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007 [2] A Avanzini, C Petrogalli, D Battini, et al. Influence of micro-notches on the fatigue strength and crack propagation of unfilled and short carbon fiber reinforced PEEK[J]. Materials & Design,2018,139:447-456. [3] Yubo Tao, Fangong Kong, Zelong Li, et al. A review on voids of 3D printed parts by fused filament fabrication[J]. Journal of Materials Research and Technology,2021,15:4860-4879. doi: 10.1016/j.jmrt.2021.10.108 [4] Ya-nan Su, Xing-hua Zhang, De-qi Jing, et al. Effect of surface functionalization on the surface and inter-facial properties of thermoplastic-coated carbon fibers[J]. New Carbon Materials,2021,36(6):1169-1176. doi: 10.1016/S1872-5805(21)60049-5 [5] D. G. Papageorgiou, M. F. Liu, Z. L. Li, et al. Hybrid poly(ether ether ketone) composites reinforced with a combination of carbon fibres and graphene nanoplatelets[J]. Composites Science and Technology,2019,175:60-68. doi: 10.1016/j.compscitech.2019.03.006 [6] B. Nandan, L. D. Kandpal, G. N. Mathur. Poly(ether ether ketone)/poly(aryl ether sulfone) blends: Melt rheological behavior[J]. Journal of Polymer Science Part B-Polymer Physics,2004,42(8):1548-1563. doi: 10.1002/polb.20039 [7] John W McLaughlin, Emma Tobin, Ronan M O'Higgins. An investigation of Polyether Imide (PEI) toughening of carbon fibre-reinforced Polyether Ether Ketone (PEEK) laminates[J]. Materials & Design,2021:110189. [8] Sandeep Kumar, Raghvendra K. Mishra, Tandra Nandi. Experimental and theoretical investigations of the high performance blends of PEEK/PEI[J]. Journal of Polymer Engineering,2017(4):351-361. [9] M. Rosa, L. Grassia, A. D'Amore, et al. Rheology and Mechanics of Polyether(ether)ketone - Polyetherimide Blends for Composites in Aeronautics, 8th International Conference on Times of Polymers (TOP) and Composites, Ischia, ITALY, 2016. [10] R. Gensler, P Béguelin, Cjg Plummer, et al. Tensile behaviour and fracture toughness of poly(ether ether ketone)/poly(ether imide) blends[J]. Polymer Bulletin,1996,37(1):111-118. doi: 10.1007/BF00313826 [11] A Mt, A Dbk, B Ds, et al. A review on PEEK composites – Manufacturing methods, properties and applications [J]. Materials Today: Proceedings, 2020, 33(11). [12] Atefeh Golbang, Eileen Harkin-Jones, Marcin Wegrzyn, et al. Production and characterization of PEEK/IF-WS2 nanocomposites for additive manufacturing: Simultaneous improvement in processing characteristics and material properties[J]. Additive Manufacturing,2020,31:100920. doi: 10.1016/j.addma.2019.100920 [13] M Bragaglia, V Cherubini, F Nanni. PEEK-TiO2 composites with enhanced UV resistance[J]. Composites Science and Technology,2020,199:108365. doi: 10.1016/j.compscitech.2020.108365 [14] Ana M. Díez-Pascual, Mohammed Naffakh, Marián A. Gómez, et al. Development and characterization of PEEK/carbon nanotube composites[J]. Carbon,2009,47(13):3079-3090. doi: 10.1016/j.carbon.2009.07.020 [15] Ana M. Díez-Pascual, Mohammed Naffakh, Carlos Marco, et al. Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: A review[J]. Current Opinion in Solid State and Materials Science,2014,18(2):62-80. doi: 10.1016/j.cossms.2013.06.003 [16] Umesh Marathe, Meghashree Padhan, Jayashree Bijwe. Carbon nanotubes-A powerful nano-filler for enhancing the performance properties of polyetherketoneketone composites and adhesives[J]. Composites Science and Technology,2021,210:108813. doi: 10.1016/j.compscitech.2021.108813 [17] F. Vahedi, H. R. Shahverdi, M. M. Shokrieh, et al. Effects of carbon nanotube content on the mechanical and electrical properties of epoxy-based composites[J]. New Carbon Materials,2014,29(6):419-425. doi: 10.1016/S1872-5805(14)60146-3 [18] Binling Chen, Silvia Berretta, Ken Evans, et al. A primary study into graphene/polyether ether ketone (PEEK) nanocomposite for laser sintering[J]. Applied Surface Science,2018,428:1018-1028. doi: 10.1016/j.apsusc.2017.09.226 [19] Miaomiao He, Xianchun Chen, Zhijun Guo, et al. Super tough graphene oxide reinforced polyetheretherketone for potential hard tissue repair applications[J]. Composites Science and Technology,2019,174:194-201. doi: 10.1016/j.compscitech.2019.02.028 [20] Ni Wu, Sai Che, Hua-wei Li, et al. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications[J]. New Carbon Materials,2021,36(5):911-926. doi: 10.1016/S1872-5805(21)60089-6 [21] Olawale Monsur Sanusi, Abdelkibir Benelfellah, Nourredine Aït Hocine. Clays and carbon nanotubes as hybrid nanofillers in thermoplastic-based nanocomposites–A review[J]. Applied Clay Science,2020,185:105408. doi: 10.1016/j.clay.2019.105408 [22] Jonathan N. Coleman, Umar Khan, Werner J. Blau, et al. Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites[J]. Carbon,2006,44(9):1624-1652. doi: 10.1016/j.carbon.2006.02.038 [23] Meisam Shabanian, Mohsen Hajibeygi, Mehdi Roohani. Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties[J]. New Carbon Materials,2015,30(5):397-403. doi: 10.1016/S1872-5805(15)60199-8 [24] Xiaohua Zhang. Carbon nanotube/polyetheretherketone nanocomposites: mechanical, thermal, and electrical properties[J]. Journal of Composite Materials,2021,55(15):2115-2132. doi: 10.1177/0021998320981134 [25] Toshio Ogasawara, Terumasa Tsuda, Nobuo Takeda. Stress–strain behavior of multi-walled carbon nanotube/PEEK composites[J]. Composites Science and Technology,2011,71(2):73-78. doi: 10.1016/j.compscitech.2010.10.001 [26] Bo Wang, Ke Zhang, Caihua Zhou, et al. Engineering the mechanical properties of CNT/PEEK nanocomposites[J]. Rsc Advances,2019,9(23):12836-12845. doi: 10.1039/C9RA01212E [27] Tonghua Wu, Xiaohan Mei, Liubo Liang, et al. Structure-function integrated poly (aryl ether ketone)-grafted MWCNTs/poly (ether ether ketone) composites with low percolation threshold of both conductivity and electromagnetic shielding[J]. Composites Science and Technology,2022,217:109032. doi: 10.1016/j.compscitech.2021.109032 [28] Hanxiong Lyu, Naiyu Jiang, Yingze Li, et al. Enhancing CF/PEEK interfacial adhesion by modified PEEK grafted with carbon nanotubes[J]. Composites Science and Technology,2021,210:108831. doi: 10.1016/j.compscitech.2021.108831 [29] Elwathig A. M. Hassan, Lili Yang, Tienah H. H. Elagib, et al. Synergistic effect of hydrogen bonding and π-π stacking in interface of CF/PEEK composites[J]. Composites Part B:Engineering,2019,171:70-77. doi: 10.1016/j.compositesb.2019.04.015 [30] Li Lin, Yuntao Han, Xiaohan Zhao, et al. Effectively improving the performance of MWNT/PEEK composite by choosing PAK-Cz as the solubilizer[J]. High Performance Polymers,2019,31(8):875-884. doi: 10.1177/0954008318804045 [31] A. M. Diez-Pascual, M. Naffakh, C. Marco, et al. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles[J]. J Phys Chem B,2012,116(27):7959-69. doi: 10.1021/jp3035314 [32] Ana María Díez-Pascual, Gerardo Martínez, María Teresa Martínez, et al. Novel nanocomposites reinforced with hydroxylated poly(ether ether ketone)-grafted carbon nanotubes [J]. Journal of Materials Chemistry, 2010, 20(38). [33] Ali Nabipour Chakoli, Jin Mei He, Yu Dong Huang. Collagen/aminated MWCNTs nanocomposites for biomedical applications[J]. Materials Today Communications,2018,15:128-133. doi: 10.1016/j.mtcomm.2018.03.003 [34] Sathyajith Ravindran, Sumit Chaudhary, Brooke Colburn, et al. Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications[J]. Nano Letters,2003,3(4):447-453. doi: 10.1021/nl0259683 [35] B. C. Janegitz, R. Pauliukaite, Mariana E. Guica, et al. Direct electron transfer of glucose oxidase at glassy carbon electrode modified with functionalized carbon nanotubes within a dihexadecylphosphate film [J]. Sensors & Actuators B Chemical, 2011, 158(1). [36] Ye Chen, Jing Tao, Alaa Ezzeddine, et al. Superior Performance Nanocomposites from Uniformly Dispersed Octadecylamine Functionalized Multi-Walled Carbon Nanotubes[J]. C,2015,1(1):58-76. [37] He-nan Mao, Xiao-gong Wang. Use of in-situ polymerization in the preparation of graphene / polymer nanocomposites[J]. New Carbon Materials,2020,35(4):336-343. doi: 10.1016/S1872-5805(20)60493-0 [38] M. N. Disfani, S. H. Jafari. Assessment of intertube interactions in different functionalized multiwalled carbon nanotubes incorporated in a phenoxy resin[J]. Polymer Engineering and Science,2013,53(1):168-175. doi: 10.1002/pen.23244 [39] DS Bangarusampath, Holger Ruckdäschel, Volker Altstädt, et al. Rheology and properties of melt-processed poly (ether ether ketone)/multi-wall carbon nanotube composites[J]. Polymer,2009,50(24):5803-5811. doi: 10.1016/j.polymer.2009.09.061 [40] Ana M. Díez-Pascual, Mohammed Naffakh, José M. González-Domínguez, et al. High performance PEEK/carbon nanotube composites compatibilized with polysulfones-I. Structure and thermal properties[J]. Carbon,2010,48(12):3485-3499. doi: 10.1016/j.carbon.2010.05.046 [41] Alicia C Martin, Nishant Lakhera, Amy L DiRienzo, et al. Amorphous-to-crystalline transition of Polyetheretherketone–carbon nanotube composites via resistive heating[J]. Composites Science and Technology,2013,89:110-119. doi: 10.1016/j.compscitech.2013.09.012 [42] Ekaterina, Pavlenko, Franois, et al. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite[J]. Journal of Applied Physics,2014,115(23):234901-234901. doi: 10.1063/1.4883299 [43] R. , Zhu, and, et al. Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites [J]. Materials Science & Engineering A, 2007, : . [44] A. M. Diez-Pascual, A. L. Diez-Vicente. High-performance aminated poly(phenylene sulfide)/ZnO nanocomposites for medical applications[J]. ACS Appl Mater Interfaces,2014,6(13):10132-45. doi: 10.1021/am501610p [45] Ana M. Díez-Pascual, Mohammed Naffakh, José M. González-Domínguez, et al. High performance PEEK/carbon nanotube composites compatibilized with polysulfones-II. Mechanical and electrical properties[J]. Carbon,2010,48(12):3500-3511. doi: 10.1016/j.carbon.2010.05.050 [46] JA Puértolas, Miguel Castro, JA Morris, et al. Tribological and mechanical properties of graphene nanoplatelet/PEEK composites[J]. Carbon,2019,141:107-122. doi: 10.1016/j.carbon.2018.09.036 [47] M. Bragaglia, V. Cherubini, F. Nanni. PEEK -TiO2 composites with enhanced UV resistance[J]. Composites Science and Technology,2020,199:108365. doi: 10.1016/j.compscitech.2020.108365 [48] MF Arif, H Alhashmi, KM Varadarajan, et al. Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing[J]. Composites Part B:Engineering,2020,184:107625. doi: 10.1016/j.compositesb.2019.107625 [49] D. X. Sun, C. J. Yang, X. D. Qi, et al. Largely enhanced fracture toughness of the PP/EPDM blends induced by adding carbon nanofibers[J]. Composites Science and Technology,2018,164:146-152. doi: 10.1016/j.compscitech.2018.05.048 [50] Hong Ma, M Ali Aravand, Brian G Falzon. Synergistic enhancement of fracture toughness in multiphase epoxy matrices modified by thermoplastic and carbon nanotubes[J]. Composites Science and Technology,2021,201:108523. doi: 10.1016/j.compscitech.2020.108523 -