Reversible surface modification of PAN-based carbon fibers by a ferrocene-based surfactant
-
摘要: 采用电化学可逆表面活性剂(二茂铁)十二烷基二甲基溴化铵(FDDA)对炭纤维进行表面改性。结果表明,FDDA能够在炭纤维表面进行吸附及电化学脱附,实现可逆的表面改性。同时证实了FDDA主要通过非静电相互作用在炭纤维表面以多分子层的方式进行吸附。此外,通过单丝拉伸断裂法探究了FDDA改性炭纤维对炭纤维/环氧树脂界面性能的影响。与未改性的炭纤维相比,FDDA改性的炭纤维与环氧树脂之间的界面黏结性能得到明显改善。Abstract: The surface of carbon fibers (CFs) was modified by a surfactant (ferrocenemethyl)dodecyldimethylammonium bromide (FDDA) to enhance the interfacial ashesion between the CFs and surrounding matrix. Results showed that it could be electrochemically desorbed by a potentiostatic electro-oxidation method. The FDDA adsorption isotherm was attributed to the formation of multi-molecular layers mainly by non-electrostatic interactions. The adsorption and desorption of FDDA on the CFs have little effect on their tensile strength. The effects of FDDA modification on the interfacial properties of CF/epoxy composites were evaluated by a single-filament fragmentation test. Compared with the un-modified CFs, the FDDA-modified ones had significantly improved interfacial adhesion properties in the composites. This method provides a potential approach for preparing recyclable CF/resin composites.
-
Key words:
- Carbon fibers /
- FDDA /
- Reversible modification /
- Interfacial properties
-
Table 1. The relative contents of surface elements on the CFs
Element
content/%CFs Before
adsorptionAfter
adsorptionAfter adsorption
and desorptionC 87.08 86.78 80.85 O 9.73 8.12 14.90 N 3.20 3.59 3.37 Fe - 1.50 0.88 Table 2. Thermodynamics parameters for the adsorption of FDDA on the CFs
T
/(K)Kc
/(L/kg)$\Delta {G}_{m}^{\theta } $
/(kJ/mol)$\Delta {H}_{m}^{\theta } $
/(kJ/mol)$\Delta {S}_{m}^{\theta } $
/(J/(mol·K))293.5 58.21 −9.91 −3.65 21.19 303.5 53.09 −10.02 308.5 52.45 −10.15 313.5 52.45 −10.32 318.5 51.18 −10.42 323.5 49.91 −10.51 -
[1] Yan H, Hu D Q, Dai Y F, et al. Self-assembly of carbon nanomaterials onto carbon fiber to improve the interfacial properties of epoxy composites[J]. Journal of Materials Science and Technology,2023,161:44-49. doi: 10.1016/j.jmst.2023.04.004 [2] Dong Z J, Sun B, Zhu H, ey al. A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management[J]. New Carbon Materials,2021,36(5):873-896. [3] Zeng N, Liu H Y, Gao J F, et al. Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves[J]. Composites Part B:Engineering,2019,171:320-328. doi: 10.1016/j.compositesb.2019.05.004 [4] Li C, Dong Y, Yuan X M, et al. Two-step method to realize continuous multi-wall carbon nanotube grafted on the fibers to improve the interface of carbon fibers/epoxy resin composites based on the Diels-Alder reaction[J]. Carbon,2023,212:118131. doi: 10.1016/j.carbon.2023.118131 [5] Li G, Yuan H, Mou J, et al. Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes[J]. Composites Communications,2022,29:101043. doi: 10.1016/j.coco.2021.101043 [6] Yao X, Gao X, Jiang J, et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J]. Composites Part B:Engineering,2018,13:170-177. [7] Li S X, Yang C L, Yao L L, et al. Use a polyurethane sizing agent to improve the interfacial properties of carbon fiber-reinforced polyurethane composites[J]. Carbon,2023,209:118028. doi: 10.1016/j.carbon.2023.118028 [8] Zhang, W, Deng X, Sui G, et al. Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites[J]. Carbon,2019,145:629-639. doi: 10.1016/j.carbon.2019.01.063 [9] Osbeck S, Bradley R H, Liu C, et al. Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres[J]. Carbon,2011,49:4322-4330. doi: 10.1016/j.carbon.2011.06.005 [10] Lee J, Lim J W, Kim M. Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite[J]. Polymer Composites,2020,41(4):1190-1202. doi: 10.1002/pc.25445 [11] Andideh M Esfandeh M. Statistical optimization of treatment conditions for the electrochemical oxidation of PAN-based carbon fiber by response surface methodology: Application to carbon fiber/epoxy composite[J]. Composites Science and Technology,2016,134:132-143. doi: 10.1016/j.compscitech.2016.08.008 [12] Scarselli G, Quan D, Prasad V, et al. Mode I fracture toughness of glass fibre reinforced thermoplastic composites after UV and atmospheric plasma treatments[J]. Composites Science and Technology,2023,236:109982. doi: 10.1016/j.compscitech.2023.109982 [13] Li N, Cheng S, Wang B, et al. Chemical grafting of graphene onto carbon fiber to produce composites with improved interfacial properties via sizing process: A step closer to industrial production[J]. Composites Science and Technology,2023,231:109822. doi: 10.1016/j.compscitech.2022.109822 [14] Jiang J, Yao X, Xu C, et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites[J]. Composites Part A:Applied Science and Manufacturing,2017,95:248-256. doi: 10.1016/j.compositesa.2017.02.004 [15] Altay L, Bozaci E, Atagur M, et al. The effect of atmospheric plasma treatment of recycled carbon fiber at different plasma powers on recycled carbon fiber and its polypropylene composites[J]. Journal of Applied Polymer Science,2018,136(9):47131. [16] Peng S H, Guo Q P, Hartley P G, et al. Azobenzene moiety variation directing self-assembly and photoresponsive behavior of azo-surfactants[J]. Journal of Materials Chemistry C,2014,2:8303-8312. doi: 10.1039/C4TC00321G [17] Tsuchiya K, Orihara Y, Kondo Y, et al. Control of viscoelasticity using redox reaction[J]. Journal of the American Chemical Society,2004,126:12282-12283. doi: 10.1021/ja0467162 [18] Ren G, Wang L, Chen Q, et al. pH Switchable Emulsions Based on Dynamic Covalent Surfactants[J]. Langmuir,2017,33(12):3040-3046. doi: 10.1021/acs.langmuir.6b04546 [19] Saji T, Hoshino K, Aoyagui S. Reversible formation and disruption of micelles by control of the redox state of the head group[J]. Journal of the American Chemical Society,1985,107:6865-6868. doi: 10.1021/ja00310a020 [20] Zhang Y, Yang C, Guo S, et al. Tandem triggering of wormlike micelles using CO2 and Redox[J]. Composites Communications,2016,52:12717-20. [21] Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick[J]. Journal of Hazardous Materials,2006,135:264-273. doi: 10.1016/j.jhazmat.2005.11.062 [22] Heinze J. Cyclic voltammetry-electrochemical spectroscopy[J]. Angewandte Chemie International Edition,1984,23:831-847. doi: 10.1002/anie.198408313 [23] Paiva M C, Bernardo C A, Nardin M. Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres[J]. Carbon,2000,3:1323-1337. [24] Yao T T, Wu G P, Song C. Interfacial adhesion properties of carbon fiber/polycarbonate composites by using a single-filament fragmentation test[J]. Composites Science and Technology,2017,149:108-115. doi: 10.1016/j.compscitech.2017.06.017 [25] Wu H F, Netrwavali A N. Weibull analysis of strength-length relationships in single Nicalon SiC fibres[J]. Journal of Materials Science,1992,27(12):3318-3324. doi: 10.1007/BF01116031 [26] Lazzari L K, Zampieri V B, Neves R M, et al. A study on adsorption isotherm and kinetics of petroleum by cellulose cryogels[J]. Cellulose,2018,26:1231-1246. [27] Ho Y S, Porter J F, Mckay G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems[J]. Water, Air, and Soil Pollution,2002,141:1-33. doi: 10.1023/A:1021304828010 [28] Takei T, Sakai H, Kondo Y, et al. Electrochemical control of solubilization using a ferrocene-modified nonionic surfactant[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2001,183-185:757-765. doi: 10.1016/S0927-7757(01)00502-7 [29] Huang H, Fan Y F, Wang J W, et al. Adsorption kinetics and thermodynamics of water-insoluble crosslinked β-cyclodextrin polymer for phenol in aqueous solution[J]. Macromolecular Research,2013,21:726-731. doi: 10.1007/s13233-013-1086-6 [30] Servinis L, Henderson L C, Andrighetto L M, et al. A novel approach to functionalise pristine unsized carbon fibre using in situ generated diazonium species to enhance interfacial shear strength[J]. Journal of Materials Chemistry A,2015,3:3360-3371. doi: 10.1039/C4TA04798B [31] Lachman N, Carey B J, Hashim D P, et al. Application of continuously-monitored single fiber fragmentation tests to carbon nanotube/carbon microfiber hybrid composites[J]. Composites Science and Technology,2012,72:1711-1717. doi: 10.1016/j.compscitech.2012.06.004 [32] Shao Y, Xu F, Liu W, et al. Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber/bisphenol-F epoxy composite[J]. Composites Part B:Engineering,2017,125:195-202. doi: 10.1016/j.compositesb.2017.05.077 -