Insights into the carbonization mechanism of bituminous coal-derived carbon materials for lithium-ion and sodium-ion batteries
-
摘要: 近年来,人们对利用低温炭化工艺制备煤基无定形炭材料作为锂离子电池(LIBs)和钠离子电池(SIBs)的负极材料产生了兴趣。然而,煤衍生炭材料的炭化机制仍然不太清楚。因此,本文选取烟煤为原料,探究了煤炭到无定形炭材料的化学、微晶和孔隙结构演变过程。随着温度的升高(低于1 000 ℃),材料结构发生局部变化,碳层的迁移和小分子物质的释放导致了层间距(3.69-3.82 Å)和缺陷密度(1.26-1.90)逐渐增大,并且产生了丰富的纳米微孔结构。当温度升至1000~1600 °C时,层间距和缺陷密度开始逐渐减小。在LIBs中,经1 000 °C炭化制备的样品表现出最佳的电化学性能。在0.1 C倍率测试下可逆容量达到384 mAh g–1,在5 C倍率下仍能保持170 mAh g–1,表现出优异的倍率性能。在SIBs中,经1200 °C炭化制备的样品在0.1 C倍率测试下具有270.1 mAh g–1的可逆容量和高达86.8%的首次库伦效率。本研究为煤基炭材料的精细化制备提供了理论支撑。Abstract: Despite recent interest in the low-temperature carbonization of coal to prepare disordered carbon materials for the anodes of lithium-ion (LIBs) and sodium-ion batteries (SIBs), the carbonization mechanism is still poorly understood. We selected bituminous coal as the raw material and investigated the chemical, microcrystal, and pore structure changes during the carbonization process from coal to the resulting disordered carbon. These structural changes with temperature below 1 000 °C show an increase in both interlayer spacing (3.69–3.82 Å) and defect concentration (1.26–1.90), accompanied by the generation of a large amount of nano-microporous materials. These changes are attributed to the migration of the local carbon layer and the release of small molecules. Furthermore, a decrease in interlayer spacing and defect concentration occurs between 1 000 °C and 1 600 °C. In LIBs, samples carbonized at 1000 °C showed the best electrochemical performance, with a reversible capacity of 384 mAh g−1 at 0.1 C and excellent rate performance, maintaining 170 mAh g−1 at 5 C. In SIBs, samples carbonized at 1 200 °C had a reversible capacity of 270.1 mAh g−1 at 0.1 C and a high initial Coulombic efficiency of 86.8%. This study offers theoretical support for refining the preparation of carbon materials derived from coal.
-
Key words:
- Coal /
- Carbonization mechanism /
- Carbon materials /
- Lithium-ion batteries /
- Sodium-ion batteries
-
Figure 1. (a) TG-DTG curves of CC. (b) MS spectra of evolving gas from TG of CC. (c) O/C and H/C atomic ratio of CC and coal-derived disordered carbon materials. (d) FTIR spectrum, and (e) High-resolution O1s spectra of CC and coal-derived disordered carbon materials at different carbonization temperatures
Figure 3. (a) XRD patterns of CC and coal-derived disordered carbon materials. (b) Schematic definition of the parameter R. (c) Variation curve of R values of CC and coal-derived disordered carbon materials at different carbonization temperatures. (d) Fitted Raman spectra, (e) Values of d002 and AD1/AG, (f) N2 adsorption-desorption isotherms, and (g) total open pore volume and average pore diameter of CC and coal-derived disordered carbon materials
Figure 4. (a) GCD curves at 0.1C, (b) Variation curve of specific capacity and ICE, and (c) Rate capacity at different current rates of coal-derived disordered carbon materials. (d) The three CV curves of CC-600, CC-1000 and CC-1400. (e) The CV curves at different rates of CC-1000. (f) A linear relationship between log (Peak Currents) and log (Sweep Rate), (g) Nyquist plots of the fresh cells of coal-derived disordered carbon materials. (h) GITT curves of the CC-1000 during the discharge/charge process in LIBs
Figure 5. (a) GCD curves at 0.1C, (b) Variation curve of specific capacity and ICE, and (c) Rate capacity at different current rates of coal-derived disordered carbon materials. (d) The 3 CV curves of CC-600, CC-1200 and CC-1400. (e) The CV curves at different rates of CC-1200. (f) A linear relationship between log (Peak Currents) and log (Sweep Rate), (g) Nyquist plots of the fresh cells of coal-derived disordered carbon materials. (h) GITT curves of the CC-1200 in SIBs
Table 1. The contents of O1s peaks of coal-derived disordered carbon materials
B.E. (eV) Assignment CC CC-600 CC-800 CC-1000 CC-1200 CC-1400 CC-1600 534.8 O―H 1.03 1.05 1.08 1.00 1.24 1.30 0.93 533.4 C―O 5.50 3.48 2.27 2.69 2.52 2.09 2.07 532.1 C=O 6.85 2.35 1.95 2.42 2.01 1.77 1.84 Table 2. Physical parameters of coal-derived disordered carbon materials
Sample CC CC-600 CC-800 CC-1000 CC-1200 CC-1400 CC-1600 R 2.03 1.50 1.90 2.17 2.20 2.35 3.17 2θ (°) 24.12 24.00 23.54 23.29 23.54 23.72 24.78 d002 (Å) 3.69 3.71 3.78 3.82 3.78 3.75 3.59 AD1/AG 1.26 1.72 1.73 1.90 1.73 1.50 1.49 Table 3. Pore structure parameters of coal-derived disordered carbon materials
Sample SBETa
(m2 g–1)Vtota
(cm3 g–1)Davea
(nm)Ture densityb
(g cm–3)Vclose pores
(cm3 g–1)SBETc
(m2 g–1)CC 2.72 0.0080 11.71 1.36 0.29 133.70 CC-600 272.97 0.0152 2.23 1.55 0.20 289.28 CC-800 38.56 0.0249 2.59 1.79 0.11 318.95 CC-1000 4.14 0.0073 7.06 1.85 0.10 293.47 CC-1200 2.03 0.0067 13.13 1.98 0.06 81.49 CC-1400 2.11 0.0069 13.07 1.73 0.14 2.55 CC-1600 2.36 0.0080 13.47 1.54 0.21 1.69 Note: a Testing under N2 atmosphere. b Testing under He atmosphere. c Testing under CO2 atmosphere. -
[1] Xing B L, Zeng H H, Huang G X, et al. Porous graphene prepared from anthracite as high performance anode materials for lithium-ion battery applications[J]. Journal of Alloys and Compounds,2019,779:202-211. doi: 10.1016/j.jallcom.2018.11.288 [2] Gao S J, Liu W F, Fu D J, et al. Research progress on recovering the components of spent Li-ion batteries[J]. New Carbon Materials,2022,37(3):435-460. doi: 10.1016/S1872–5805(22)60605–X [3] Slater M D, Kim D H, Lee E, et al. Sodium-ion batteries[J]. Advanced Functional Materials,2013,23:947-958. doi: 10.1002/adfm.201200691 [4] Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources,2010,195:2419-2430. doi: 10.1016/j.jpowsour.2009.11.048 [5] Xie L J, Tang C, Bi Z H, et al. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective[J]. Advanced Energy Materials,2021,11(38):2101650. doi: 10.1002/aenm.202101650 [6] Udod I A. Sodium-graphite intercalation compound of the first stage: Two-dimensional structure and stability[J]. Synthetic Metals,1997,88(2):127-131. doi: 10.1016/S0379–6779(97)80890–9 [7] Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society,2001,148(48):803-811. doi: 10.1149/1.1379565 [8] Yuan Y, Chen Z W, Yu H X, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials,2020,32:65-90. doi: 10.1016/j.ensm.2020.07.027 [9] Ding J, Wang H L, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7(12):11004-11015. doi: 10.1021/nn404640c [10] Cheng J Y, Yi Z L, Wang Z B, et al. Towards optimized Li-ion storage performance: Insight on the oxygen species evolution of hard carbon by H2 reduction[J]. Electrochimica Acta,2020,337(20):135736. doi: 10.1016/j.electacta.2020.135736 [11] Yu J L, Tahmasebi A, Han Y N, et al. A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization[J]. Fuel Processing Technology,2013,106:9-20. doi: 10.1016/j.fuproc.2012.09.051 [12] Peng Z F, Ning X J, Wang G W, et al. Structural characteristics and flammability of low-order coal pyrolysis semi-coke[J]. Journal of the Energy Institute,2020,93(4):1341-1353. doi: 10.1016/j.joei.2019.12.004 [13] Shi M, Song C L, Tai Z G, et al. Coal-derived synthetic graphite with high specific capacity and excellent cyclic stability as anode material for lithium-ion batteries[J]. Fuel,2021,292:120250. doi: 10.1016/j.fuel.2021.120250 [14] Xing B L, Zhang C T, Cao Y J, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries[J]. Fuel Processing Technology,2018,172:162-171. doi: 10.1016/j.fuproc.2017.12.018 [15] Ehrburger P, Addoun A, Addoun F, et al. Carbonization of coals in the presence of alkaline hydroxides and carbonates: Formation of activated carbons[J]. Fuel,1986,65(10):1447-1449. doi: 10.1016/0016–2361(86)90121–3 [16] Hsu L Y, Teng H S. Influence of different chemical reagents on the preparation of activated carbons from bituminous coal[J]. Fuel Processing Technology,2000,64(1):155-166. doi: 10.1016/S0378–3820(00)00071–0 [17] Zhao H Y, Wang L X, Jia D Z, et al. Coal based activated carbon nanofibers prepared by electrospinning[J]. Journal of Materials Chemistry A,2014,2(24):9338-9344. doi: 10.1039/C4TA00069B [18] Gao F, Qu J Y, Zhao Z B, et al. A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application[J]. Carbon,2014,80:640-650. doi: 10.1016/j.carbon.2014.09.008 [19] Zhang T K, Wang Q, Li G Q, et al. Formation of carbon nanotubes from potassium catalyzed pyrolysis of bituminous coal[J]. Fuel,2019,239:230-238. doi: 10.1016/j.fuel.2018.11.010 [20] Moothi K, Lyuke S E, Meyyappan M, et al. Coal as a carbon source for carbon nanotube synthesis[J]. Carbon,2012,50(8):2679-2690. doi: 10.1016/j.carbon.2012.02.048 [21] Sun W J, Wang N, Chu W, et al. The role of volatiles and coal structural variation in coal methane adsorption[J]. Science Bulletin,2015,60(5):532-540. doi: 10.1007/s11434–015–0747–6 [22] Porada S. The reactions of formation of selected gas products during coal pyrolysis[J]. Fuel,2004,83(9):1191-1196. doi: 10.1016/j.fuel.2003.11.007 [23] Li J, Cao Y L, Wang L X, et al. Cost-effective synthesis of bamboo-structure carbon nanotubes from coal for reversible lithium storage[J]. RSC Advances,2017,7:34770-34775. doi: 10.1039/C7RA04047D [24] He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of Materials Chemistry A,2014,2(46):19633-19640. doi: 10.1039/C4TA03323J [25] Zhao X J, Jia W, Wu X Y, et al. Ultrafine MoO3 anchored in coal-based carbon nanofibers as anode for advanced lithium-ion batteries[J]. Carbon,2020,156:445-452. doi: 10.1016/j.carbon.2019.09.065 [26] Li M Y, Tsai W Y, Thapaliya B P, et al. Modified coal char materials with high rate performance for battery applications[J]. Carbon,2021,172:414-421. doi: 10.1016/j.carbon.2020.10.035 [27] Wang K F, Sun F, Wang H, et al. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor[J]. Advanced Functional Materials,2022,32(34):2203725. doi: 10.1002/adfm.202203725 [28] Wang Y H, Yang W, Yan F Z, et al. Study on coal molecular structure characteristics on methane adsorption performance under pyrolysis treatment[J]. Fuel,2022,328:125228. doi: 10.1016/j.fuel.2022.125228 [29] Yang W, Wang Y H, Yan F Z, et al. Evolution characteristics of coal microstructure and its influence on methane adsorption capacity under high temperature pyrolysis[J]. Energy,2020,254:124262. doi: 10.1016/j.energy.2022.124262 [30] Hu J H, Chen Y Q, Qian K Z, et al. Evolution of char structure during mengdong coal pyrolysis: Influence of temperature and K2CO3[J]. Fuel Processing Technology,2017,159:178-186. doi: 10.1016/j.fuproc.2017.01.042 [31] Li Y, Wang Z H, Huang Z Y, et al. Effect of pyrolysis temperature on lignite char properties and slurrying ability[J]. Fuel Processing Technology,2015,134:52-58. doi: 10.1016/j.fuproc.2015.01.007 [32] Chen Y Y, Mastalerz M, Schimmelmann A. Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy[J]. International Journal of Coal Geology,2012,104:22-33. doi: 10.1016/j.coal.2012.09.001 [33] Zhang K, Li Y, Wang Z H, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel,2016,185:701-708. doi: 10.1016/j.fuel.2016.08.038 [34] Qi Y R, Lu Y X, Ding F X, et al. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries[J]. Angewandte Chemie, International Edition,2019,58(13):4361-4365. doi: 10.1002/anie.201900005 [35] Song M X, Yi Z L, Xu R, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials,2022,51:620-629. doi: 10.1016/j.ensm.2022.07.005 [36] Li Z Q, Lu C J, Xia Z P, et al. X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon,2007,45(8):1686-1695. doi: 10.1016/j.carbon.2007.03.038 [37] Zheng T, Xing W, Dahn J R. Carbons prepared from coals for anodes of lithium-ion cells[J]. Carbon,1996,34(12):1501-1507. doi: 10.1016/S0008–6223(96)00098–X [38] Dahn J R, Xing W, Gao Y. The “falling cards model” for the structure of microporous carbons[J]. Carbon,1997,35(6):825-830. doi: 10.1016/S0008–6223(97)00037–7 [39] Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon,2005,43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018 [40] Meng D X, Yue C Y, Wang T, et al. Evolution of carbon structure and functional group during Shenmu lump coal pyrolysis[J]. Fuel,2021,287:119538. doi: 10.1016/j.fuel.2020.119538 [41] Xu R S, Zhang J L, Wang G W, et al. Isothermal kinetic analysis on fast pyrolysis of lump coal used in COREX process[J]. Journal of Thermal Analysis and Calorimetry,2016,123:773-783. doi: 10.1007/s10973–015–4972–7 [42] Liang D C, Xie Q, Wan C R, et al. Evolution of structural and surface chemistry during pyrolysis of Zhundong coal in an entrained-flow bed reactor[J]. Journal of Analytical and Applied Pyrolysis,2019,140:331-338. doi: 10.1016/j.jaap.2019.04.010 [43] Chen Y X, Xi B J, Huang M, et al. Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage[J]. Advanced Materials,2022,34(7):2108621. doi: 10.1002/adma.202108621 [44] Li X J, Hayashi J I, Li C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12-13):1700-1707. doi: 10.1016/j.fuel.2006.03.008 [45] Chen M, Yu H W, Chen J H, et al. Effect of purification treatment on adsorption characteristics of carbon nanotubes[J]. Diamond and Related Materials,2007,16(4-7):1110-1115. doi: 10.1016/j.diamond.2006.12.061 [46] Buiel E R, George A E, Dahn J R. Model of micropore closure in hard carbon prepared from sucrose[J]. Carbon,1999,37:1399-1407. doi: 10.1016/S0008–6223(98)00335–2 [47] Ji H J, Mao Y N, Su H T. Effects of organic micromolecules in bituminous coal on its microscopic pore characteristics[J]. Fuel,2020,262:116529. doi: 10.1016/j.fuel.2019.116529 [48] Evanoff K, Magasinski A, Yang J B, et al. Nanosilicon-coated graphene granules as anodes for Li-ion batteries[J]. Advanced Energy Materials,2011,1(4):495-498. doi: 10.1002/aenm.201100071 [49] Sun Z F, Chen Y X, Xi B J, et al. Edge-oxidation-induced densification towards hybrid bulk carbon for low-voltage, reversible and fast potassium storage[J]. Energy Storage Materials,2022,53:482-491. doi: 10.1016/j.ensm.2022.09.031 [50] Liu Y, Dai H D, Wu L, et al. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries[J]. Advanced Energy Materials,2019,9(34):1901379. doi: 10.1002/aenm.201901379 [51] Ruan J F, Zhao Y H, Luo S N, et al. Fast and stable potassium-ion storage achieved by in situ molecular self-assembling N/O dual-doped carbon network[J]. Energy Storage Materials,2019,23:46-54. doi: 10.1016/j.ensm.2019.05.037 [52] Cao B, Liu H, Xu B, et al. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. Journal of Materials Chemistry A,2016,4(17):6472-6478. doi: 10.1039/C6TA00950F [53] Sun N, Guan Z R X, Liu Y W, et al. Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials,2019,9(32):1901351. doi: 10.1002/aenm.201901351 [54] Jin Y, Sun S X, Ou M Y, et al. High-performance hard carbon anode: tunable local structures and sodium storage mechanism[J]. ACS Applied Energy Materials,2018,1(5):2295-2305. doi: 10.1021/acsaem.8b00354 -
20230511supportting imformation.pdf
-