Deposition of MnO2 on KOH-activated laser-produced graphene for a flexible planar micro-supercapacitor
-
摘要: 柔性超级电容器具有超高的功率密度和超长的循环寿命,结合其结构的灵活性、轻质和形状多样性的特点,在储能领域具有巨大的应用潜力。发展柔性超级电容器首先要解决柔性电极制备的难题。本研究通过激光直写技术结合KOH活化得到高柔性、高导电性的微孔石墨烯基底,即活化的激光诱导石墨烯(a-LIG),然后用电化学沉积法在其上沉积二氧化锰,成功开发出柔性a-LIG/MnO2电极。在1 mol/L的Na2SO4电解质中,当电流密度为1 mA/cm2时,复合a-LIG/MnO2电极表现出304.61 mF/cm2的高面积比电容。以a-LIG/MnO2为阳极,a-LIG为阴极,PVA/H3PO4为凝胶电解质,组装了柔性非对称超级电容器,在功率密度为260.28 μW/cm2时其面积能量密度为2.61 μWh/cm2,在电流密度为0.2 mA/cm2时其面积比电容为18.82 mF/cm2,且5000次循环后电容保持率达到90.28%。此外,柔性a-LIG/MnO2@a-LIG器件在弯曲状态下也表现出优异的电化学性能。这项工作为合理设计高性能的柔性超级电容器电极提供了一种简单和可扩展的方法,并可能为大规模制造平面柔性超级电容器提供新的途径。Abstract: The rapid development of flexible supercapacitors has been impeded by the difficulty of preparing flexible electrodes. We report the fabrication of a highly flexible and conductive microporous graphene-based substrate obtained by direct laser writing combined with KOH activation, which we call activated laser-produced graphene (a-LPG), which is then decorated with electrochemically deposited MnO2 to form a flexible a-LIG/MnO2 thin-film electrode. This hybrid electrode has a high areal capacitance of 304.61 mF/cm2 at a current density of 1 mA/cm2 in a 1 mol/L Na2SO4 aqueous electrolyte. A flexible asymmetric supercapacitor with a-LIG/MnO2 as the anode, a-LIG as the cathode and PVA/ H3PO4 as a gel electrolyte was assembled, giving an areal energy density of 2.61 μWh/cm2 at a power density of 260.28 µW/cm2 and an ultra-high areal capacitance of 18.82 mF/cm2 at 0.2 mA/cm2, with 90.28% capacitance retained after 5 000 cycles. It also has an excellent electrochemical performance even in the bent state. This work provides an easy and scalable method to design high-performance flexible supercapacitor electrodes and may open a new way for their large-scale fabrication.
-
Key words:
- Micro-supercapacitor /
- Laser processing /
- Flexible electrode /
- Porous graphene
-
Figure 7. Electrochemical properties of a-LIG/MnO2@a-LIG MSC. (a) CV curves at a scan rate of 10-100 mV/s. (b) GCD curves at current density range of 0.1-0.5 mA/cm2. (c) Nyquist plots of a-LIG/MnO2@a-LIG MSC with/without KOH treatment, the inset shows the enlarged area. (d) Cycling stability at 0.2 mA/cm2 current density
Figure 8. Flexibility test of a-LIG/MnO2@a-LIG MSC. (a) Bending photograph of the device. The angle marked as θ in the image is defined as the bending angle, (b) CV curves for different degrees of bending from 0°-180°, (c) GCD curves for different degrees of bending from 0°-180°, (d) Ragone plots of a-LIG/MnO2@a-LIG MSC and MSC devices with LIG-based electrodes of various electrolytes. Data are reproduced from ref. (N-LIG-SC), ref. (MoS2-LIG), (S-LIG-SC), ref. (LIG-O2), ref.(B-LIG), and ref. (LIG)
-
[1] Bao J, Lin N, Guo J, et al. Effects of nano-SiO2 doped PbO2 as the positive electrode on the performance of lead-carbon hybrid capacitor[J]. Journal of Colloid and Interface Science,2020,574:377-384. doi: 10.1016/j.jcis.2020.03.082 [2] Zhang M, Dong L, Zhang C, et al. Heterogeneous nucleation of Li3VO4 regulated in dense graphene aerogel for lithium ion capacitors[J]. Journal of Power Sources,2020,468:228364. doi: 10.1016/j.jpowsour.2020.228364 [3] Jiang H, Wang S, Zhang B, et al. High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match[J]. Chemical Engineering Journal,2020,396:125207. doi: 10.1016/j.cej.2020.125207 [4] Clerici F, Fontana M, Bianco S, et al. In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2016,8(16):10459-10465. [5] Kang S H, Kim I G, Kim B N, et al. Facile fabrication of flexible in‐plane graphene micro‐supercapacitor via flash reduction[J]. ETRI Journal,2018,40(2):275-282. doi: 10.4218/etrij.2017-0242 [6] Zhao Y, Liu C, Lu Q, et al. Recent progress on freestanding carbon electrodes for flexible supercapacitors[J]. New Carbon Materials,2022,37(5):875-897. doi: 10.1016/S1872-5805(22)60637-1 [7] Kong K, Xue W, Zhu W, et al. The fabrication of bowl-shaped polypyrrole/graphene nanostructural electrodes and its application in all-solid-state supercapacitor devices[J]. Journal of Power Sources,2020,470:228452. doi: 10.1016/j.jpowsour.2020.228452 [8] Zhang L, DeArmond D, Alvarez N T, et al. Flexible micro‐supercapacitor based on graphene with 3D structure[J]. Small,2017,13(10):1603114. doi: 10.1002/smll.201603114 [9] Zaccagnini P, di Giovanni D, Gomez M G, et al. Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis[J]. Electrochimica Acta,2020,357:136838. doi: 10.1016/j.electacta.2020.136838 [10] Tran T X, Choi H, Che C H, et al. Laser-induced reduction of graphene oxide by intensity-modulated line beam for supercapacitor applications[J]. ACS Applied Materials & Interfaces,2018,10(46):39777-39784. [11] Nan H, Liu M, Zhang W, et al. One-step synthesis of NiCo2S4 with high electrochemical performance used for hybrid capacitor[J]. Journal of Alloys and Compounds,2020,832:155037. doi: 10.1016/j.jallcom.2020.155037 [12] Liu Z, Wang H I, Narita A, et al. Photoswitchable micro-supercapacitor based on a diarylethene-graphene composite film[J]. Journal of the American Chemical Society,2017,139(28):9443-9446. doi: 10.1021/jacs.7b04491 [13] Selvakumar M, De S, Chidangil S, et al. Laser induced graphene with biopolymer electrolyte for supercapacitor applications[J]. Materials Today:Proceedings,2022,48:365-370. doi: 10.1016/j.matpr.2020.08.791 [14] Liu M, Wu J N, Cheng H Y. Effects of laser processing parameters on properties of laser-induced graphene by irradiating CO2 laser on polyimide[J]. Science China Technological Sciences,2022,65(1):41-52. doi: 10.1007/s11431-021-1918-8 [15] Mikheev K G, Zonov R G, Mogileva T N, et al. Optical anisotropy of laser-induced graphene films[J]. Optics & Laser Technology,2021,141:107143. [16] Kim K Y, Choi H, Van Tran C, et al. Simultaneous densification and nitrogen doping of laser-induced graphene by duplicated pyrolysis for supercapacitor applications[J]. Journal of Power Sources,2019,441:227199. doi: 10.1016/j.jpowsour.2019.227199 [17] Li H, Shen H, Shi Y, et al. Progress and prospects of graphene for in-plane micro-supercapacitors[J]. New Carbon Materials,2022,37(5):781-801. doi: 10.1016/S1872-5805(22)60640-1 [18] Wang M, Chen J, Lu K, et al. Preparation of high-performance flexible microsupercapacitors based on papermaking and laser-induced graphene techniques[J]. Electrochimica Acta,2022,401:139490. doi: 10.1016/j.electacta.2021.139490 [19] Liu J, Xu Y G, Kong L B. Synthesis of polyvalent ion reaction of MoS2/CoS2-RGO anode materials for high-performance sodium-ion batteries and sodium-ion capacitors[J]. Journal of colloid and interface science,2020,575:42-53. doi: 10.1016/j.jcis.2020.04.074 [20] Liu H, Moon K, Li J, et al. Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors[J]. Nano Energy,2020,77:105058. doi: 10.1016/j.nanoen.2020.105058 [21] Peng Y, Zhao W, Ni F, et al. Forest-like laser-induced graphene film with ultrahigh solar energy utilization efficiency[J]. ACS Nano,2021,15(12):19490-19502. doi: 10.1021/acsnano.1c06277 [22] Zhang Z, Song M, Hao J, et al. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates[J]. Carbon,2018,127:287-296. doi: 10.1016/j.carbon.2017.11.014 [23] Singh S P, Li Y, Zhang J, et al. Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes[J]. ACS Nano,2018,12(1):289-297. doi: 10.1021/acsnano.7b06263 [24] Nebel A, Herrmann T, Henrich B, et al. Fast micromachining using picosecond lasers[C]//Critical Review: Industrial Lasers and Applications. SPIE, 2005, 5706: 87-98 Doi: 10.1117/12.601651. [25] Liu J, Liu H, Lin N, et al. Facile fabrication of super-hydrophilic porous graphene with ultra-fast spreading feature and capillary effect by direct laser writing[J]. Materials Chemistry and Physics,2020,251:123083. doi: 10.1016/j.matchemphys.2020.123083 [26] Biswas R K, Vijayaraghavan R K, McNally P, et al. Graphene growth kinetics for CO2 laser carbonization of polyimide[J]. Materials Letters,2022,307:131097. doi: 10.1016/j.matlet.2021.131097 [27] Liu H, Xie Y, Liu J, et al. Laser-induced and KOH-activated 3D graphene: a flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors[J]. Chemical Engineering Journal,2020,393:124672. doi: 10.1016/j.cej.2020.124672 [28] Xu R, Wang Z, Gao L, et al. Effective design of MnO2 nanoparticles embedded in laser-induced graphene as shape-controllable electrodes for flexible planar microsupercapacitors[J]. Applied Surface Science,2022,571:151385. doi: 10.1016/j.apsusc.2021.151385 [29] Jiang S, Shi T, Liu D, et al. Integration of MnO2 thin film and carbon nanotubes to three-dimensional carbon microelectrodes for electrochemical microcapacitors[J]. Journal of Power Sources,2014,262:494-500. doi: 10.1016/j.jpowsour.2013.12.009 [30] Ribeiro-Soares J, Oliveros M E, Garin C, et al. Structural analysis of polycrystalline graphene systems by Raman spectroscopy[J]. Carbon,2015,95:646-652. doi: 10.1016/j.carbon.2015.08.020 [31] Lamberti A, Perrucci F, Caprioli M, et al. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties[J]. Nanotechnology,2017,28(17):174002. doi: 10.1088/1361-6528/aa6615 [32] Zhu C, Dong X, Mei X, et al. Direct laser writing of MnO2 decorated graphene as flexible supercapacitor electrodes[J]. Journal of Materials Science,2020,55(36):17108-17119. doi: 10.1007/s10853-020-05212-2 [33] Mahmood F, Zhang H, Lin J, et al. Laser-induced graphene derived from kraft lignin for flexible supercapacitors[J]. ACS Omega,2020,5(24):14611-14618. doi: 10.1021/acsomega.0c01293 [34] Lu X, Luo X, Zhang J, et al. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene[J]. Nano Research,2016,9:3559-3597. doi: 10.1007/s12274-016-1224-5 [35] Yuan M, Luo F, Rao Y, et al. SWCNT-bridged laser-induced graphene fibers decorated with MnO2 nanoparticles for high-performance flexible micro-supercapacitors[J]. Carbon,2021,183:128-137. doi: 10.1016/j.carbon.2021.07.014 [36] Liu X, Cheng H, Zhao Y, et al. Portable electrochemical biosensor based on laser-induced graphene and MnO2 switch-bridged DNA signal amplification for sensitive detection of pesticide[J]. Biosensors and Bioelectronics,2022,199:113906. doi: 10.1016/j.bios.2021.113906 [37] Ma J, Cui Z, Du Y, et al. Multifunctional Prussian blue/graphene ink for flexible biosensors and supercapacitors[J]. Electrochimica Acta,2021,387:138496. doi: 10.1016/j.electacta.2021.138496 [38] Duignan T T, Zhao X S. Impurities limit the capacitance of carbon-based supercapacitors[J]. The Journal of Physical Chemistry C,2019,123(7):4085-4093. doi: 10.1021/acs.jpcc.8b12031 [39] Parmeggiani M, Zaccagnini P, Stassi S, et al. PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes[J]. ACS Applied Materials & Interfaces,2019,11(36):33221-33230. [40] Ma W, Zhu J, Wang Z, et al. Recent advances in preparation and application of laser-induced graphene in energy storage devices[J]. Materials Today Energy,2020,18:100569. doi: 10.1016/j.mtener.2020.100569 [41] Qu W, Zhao Z, Wang J, et al. Direct laser writing of pure lignin on carbon cloth for highly flexible supercapacitors with enhanced areal capacitance[J]. Sustainable Energy & Fuels,2021,5(14):3744-3754. [42] Khandelwal M, Van Tran C, In J B. Nitrogen and phosphorous Co-doped laser-induced graphene: A high-performance electrode material for supercapacitor applications[J]. Applied Surface Science,2022,576:151714. doi: 10.1016/j.apsusc.2021.151714 [43] Li Y, Luong D X, Zhang J, et al. Laser‐induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces[J]. Advanced Materials,2017,29(27):1700496. doi: 10.1002/adma.201700496 [44] Snook G A, Kao P, Best A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of power sources,2011,196(1):1-12. doi: 10.1016/j.jpowsour.2010.06.084 [45] Beidaghi M, Wang C. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes[J]. Electrochimica Acta,2011,56(25):9508-9514. doi: 10.1016/j.electacta.2011.08.054 [46] Peng Z, Ye R, Mann J A, et al. Flexible boron-doped laser-induced graphene microsupercapacitors[J]. ACS Nano,2015,9(6):5868-5875. doi: 10.1021/acsnano.5b00436 -
20230509supportting imformation.pdf
-