Recent advances in 3D interconnected carbon/metal high thermal conductivity composites
-
摘要: 随着电子设备的产热不断攀升,在确保设备性能和寿命方面,高效散热已成为一个关键的技术问题,高的导热性通常取决于填料在复合材料中形成快速导热通道的能力。近年来,在复合材料中利用高导热性填料开发三维互连结构已成为一种很有前途的方法。与传统的均匀分布和定向排列相比,填料的三维互连结构显著提高了复合材料的热导率。本文综述了三维互连结构的炭材料增强金属基导热复合材料的研究进展,讨论了复合材料的导热机理和导热模型,分析了提高复合材料导热性能的关键因素。本文通过回顾这些独特的构建三维互连炭材料网络的形式及其对复合材料导热性能的影响,旨在为进一步开发高性能金属基导热复合材料提供参考。Abstract: As the temperature of electronic devices continues to rise, the quest for high-efficiency heat dissipation has emerged as a critical concern, particularly when it comes to ensuring device performance and longevity. A high thermal conductivity is usually dependent on the ability of fillers to provide thermal conduction channels within composites. In recent years, the development of three-dimensional (3D) interconnected structures using high thermal conductivity fillers in composites has emerged as a promising approach. Compared to the traditional isotropic distribution and directional arrangements, 3D interconnected filler structures improve the thermal conductivity. We review research progress on metal matrix composites with a 3D interconnected carbon filler that have a high thermal conductivity. The thermal conductivity mechanisms and models of composites are elaborated, and important factors relevant to improving the thermal conductivity are considered. Ways of constructing 3D interconnected carbon networks and their effects on the thermal conductivity of their composites should serve as a reference for the advancement of high-performance metal matrix thermal conductivity composites.
-
Figure 1. (a) Thermal conduction in matter by collision of particles. (b) Thermal conductivity mechanism in a crystalline material. (c) Phonon scattering in crystalline materials, due to various defects[41]. Copyright 2016 Elsevier Ltd.
Figure 2. Composition, structure model and heat transfer path of 0D-3D carbon filler/metal thermal conductivity composites[5]. Copyright 2020 Elsevier Ltd.
Figure 3. Schematic diagram of Rayleigh model, consisting of parallel cylinders embedded in a continuous matrix[50]
Figure 4. Schematic diagram of partially connected channels formed by fillers in composites. Black particles represent the fillers that form a continuous heat transfer channel from source to sink. White is for matrix particles, and hatching is for the fillers which do not form a continuous channel[50]
Figure 5. Construction of diamond interconnection network. (a) Diamond forms locally connected structure in copper matrix[74]. Copyright 2004 Elsevier Ltd. (b) Microstructure studies have found the formation of diamond frameworks[36]. Copyright 2008 Elsevier Ltd. (c) Thermal conductivity channel model of diamond/Cu composites
Figure 6. Construction of 3D carbon fiber network by binder connection. (a) Flowchart of preparing short carbon fiber network structure[79]. Copyright 2019 Elsevier Ltd. (b) Microscopic images of carbon fiber network structure[76]. Copyright 2012 Springer Nature. (c) Diagram of the formation of carbon bonded carbon fiber. (d) Microscopic picture of carbonaceous bond point[77]. Copyright 2018 Elsevier Ltd. (e) Self-bonded 3D porous graphite fiber monolith using asphalt as binder[78]. Copyright 2022 Elsevier Ltd.
Figure 7. Construction of 3D carbon material by foam formwork. (a) Construction of 3D carbon nanotubes by melamine foam[38]. Copyright 2019 IOP Publishing, Ltd. (b) Construction of 3D graphite foam modified by multi walled carbon nanotubes by polyurethane foam[80]. Copyright 2022 Elsevier Ltd. (c) Construction of 3D graphite skeleton by polyurethane foam[81]. (d) Graphite foam was prepared by polyurethane foam template[82]. Copyright 2017 Elsevier Ltd.
Figure 8. Construction of 3D carbon material by template-directed CVD. (a) 3D graphene constructed by matrix powder template[83]. (b) 3D diamond foam constructed by Cr modified Cu foam template[5]. Copyright 2020 Elsevier Ltd. (c) 3D graphene constructed by porous matrix template[84]. Copyright 2018 Elsevier Ltd.
Figure 9. Some related 3D carbon filler construction methods. (a) Construct 3D porous carbon by adding pore forming agents[85]. Copyright 2022 Elsevier Ltd. (b) 3D Cu film network constructed by carbon felt skeleton[86]. Copyright 2020 Elsevier Ltd. (c) 3D interconnected graphene foam constructed by polyurethane sponge template[87]. Copyright 2019 RSC Pub. (d) 3D vertically arranged carbon fiber skeleton constructed by vertical freezing[88]. Copyright 2020 Elsevier Ltd
Figure 10. Diagram of high-temperature and high-pressure experimental equipment: (a) High-temperature and high-pressure assembly block physical. (b) Diagram of high-temperature and high-pressure assembly block. (c) Diagram of the chamber of high-temperature and high-pressure equipment[90]
Table 1. Summary of theoretical models for predicting the thermal conductivity of composites
Model name Formula Characteriatics Maxwell $\dfrac{ {k}_{{\rm{c}}} }{ {k}_{{\rm{m}}} }=1+\dfrac{3{V}_{{\rm{f}}} }{\left(\dfrac{ {k}_{{\rm{f}}}{+}2{k}_{{\rm{m}}} }{ {k}_{{\rm{f}}}-{k}_{{\rm{m}}} }\right)-{V}_{{\rm{f}}} }$ • Uniformly distributed spherical filler
• Low loadingMaxwell-Eucken $ {k}_{{\rm{c}}}={k}_{{\rm{m}}}\left[\dfrac{2{k}_{{\rm{m}}}+{k}_{{\rm{f}}}+2{V}_{{\rm{f}}}\left({k}_{{\rm{f}}}-{k}_{{\rm{m}}}\right)}{2{k}_{{\rm{m}}}+{k}_{{\rm{f}}}-{V}_{{\rm{f}}}\left({k}_{{\rm{f}}}-{k}_{{\rm{m}}}\right)}\right] $ • Uniformly distributed spherical filler
• Low loadingHamilton-Crosser $ {k}_{{\rm{c}}}={k}_{{\rm{m}}}\left[\dfrac{\left(n-1\right){k}_{{\rm{m}}}+{k}_{{\rm{f}}}+\left(n-1\right){V}_{{\rm{f}}}\left({k}_{{\rm{f}}}-{k}_{{\rm{m}}}\right)}{\left(n-1\right){k}_{{\rm{m}}}+{k}_{{\rm{f}}}-{V}_{{\rm{f}}}\left({k}_{{\rm{f}}}-{k}_{{\rm{m}}}\right)}\right]n=\dfrac{3}{\Psi } $ • Considering the effect of geometry of fillers Lewis-Nielsen $ {k}_{{\rm{c}}}={k}_{{\rm{m}}}\dfrac{1+\dfrac{B\left({k}_{{\rm{f}}}-{k}_{{\rm{m}}}\right)}{{k}_{{\rm{f}}}+B{k}_{{\rm{m}}}}{V}_{{\rm{f}}}}{1-\dfrac{{k}_{{\rm{f}}}-{k}_{{\rm{m}}}}{{k}_{{\rm{f}}}+B{k}_{{\rm{m}}}}\left[1+\left(\dfrac{1-{\varnothing }_{{\rm{m}}}}{{{\varnothing }_{{\rm{m}}}}^{2}}\right){V}_{{\rm{f}}}\right]{V}_{{\rm{f}}}} $ • Considering the effect of shape, aspect ratio and
packing factor of fillersBruggeman $ 1-{V}_{{\rm{f}}}=\dfrac{{k}_{{\rm{f}}}-{k}_{{\rm{c}}}}{{k}_{{\rm{f}}}-{k}_{{\rm{m}}}}{\left(\dfrac{{k}_{{\rm{m}}}}{{k}_{{\rm{c}}}}\right)}^{1/3} $ • Uniformly distributed spherical filler
• High loadingRayleigh $\dfrac{ {k}_{{\rm{c}},{\rm{ZZ}}} }{ {k}_{ {\rm{m} } } }=1+\left(\dfrac{ {k}_{ {\rm{f} } }-{k}_{ {\rm{m} } } }{ {k}_{ {\rm{m} } } }\right){V}_{ {\rm{f} } }$
$\dfrac{ {k}_{ {\rm{c} },{\rm{XX} } } }{ {k}_{ {\rm{m} } } }=\dfrac{ {k}_{ {\rm{c} },{\rm{YY} } } }{ {k}_{ {\rm{m} } } }=1+$
$\dfrac{2{V}_{ {\rm{f} } } }{ {C}_{1}-{V}_{ {\rm{f} } }+{C}_{2}\left(0.30584{ {V}_{ {\rm{f} } } }^{4}+0.013363{ {V}_{ {\rm{f} } } }^{8}+\cdots\right)}$• Considering the thermal interaction between particles Hasselman-Johnson ${k}_{{\rm{c}}}={k}_{{\rm{m}}}\left[\dfrac{2{k}_{{\rm{m}}}+{ {k}_{{\rm{f}}} }^{eff}+2{V}_{{\rm{f}}}\left({ {k}_{{\rm{f}}} }^{eff}-{k}_{{\rm{m}}}\right)}{2{k}_{{\rm{m}}}+{ {k}_{{\rm{f}}} }^{eff}-{V}_{{\rm{f}}}\left({ {k}_{{\rm{f}}} }^{eff}-{k}_{{\rm{m}}}\right)}\right]{ {k}_{{\rm{f}}} }^{eff}=\dfrac{ {k}_{{\rm{f}}} }{1+\dfrac{ {k}_{{\rm{f}}} }{h\cdot r} }$ • Uniformly distributed spherical filler
• Considering the effect of two-phase interfaceAgari $\lg{k}_{ {\rm{c} } }=\left(1-{V}_{ {\rm{f} } }\right)\lg\left({R}_{1}{k}_{ {\rm{m} } }\right)+{V}_{ {\rm{f} } }{R}_{2}\lg{k}_{ {\rm{f} } }$ • Fillers with various shapes and sizes
• Considering the formation of heat conduction channelFoygel $ {k}_{{\rm{c}}}={k}_{0}{\left({k}_{{\rm{f}}}-{V}_{{\rm{c}}}\right)}^{\beta }R=\dfrac{1}{{k}_{0}L{\left({V}_{{\rm{c}}}\right)}^{\beta }} $ • Considering the critical volume fraction of fillers
required for forming 3D heat conduction channel3D ROM $ {k}_{{\rm{c}}}=\dfrac{1}{3}{V}_{{\rm{f}}}{k}_{{\rm{s}}}+\left(1-{V}_{{\rm{f}}}\right){k}_{{\rm{m}}} $ • Isotropic 3D structure Modified 3D ROM $ {k}_{{\rm{c}}}={\mu }_{1}\xi {V}_{{\rm{f}}}{k}_{{\rm{s}}}+{\mu }_{2}\left(1-\xi \right){V}_{{\rm{f}}}{k}_{{\rm{s}}}+\left(1-{V}_{{\rm{f}}}\right){k}_{{\rm{m}}} $ • Anisotropic 3D structure -
[1] Zhang F, Feng Y, Feng W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties and mechanisms[J]. Materials Science and Engineering R Reports,2020,142:100580. doi: 10.1016/j.mser.2020.100580 [2] Wu N, Che S, Li H W, et al. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications[J]. New Carbon Materials,2021,36(5):911-926. doi: 10.1016/S1872-5805(21)60089-6 [3] Ali S, Ahmad F, Yusoff P, et al. A review of graphene reinforced Cu matrix composites for thermal management of smart electronics[J]. Composites Part A: Applied Science and Manufacturing,2021,144:106357. doi: 10.1016/j.compositesa.2021.106357 [4] Qin M, Feng Y, Ji T, et al. Enhancement of cross-plane thermal conductivity and mechanical strength via vertical aligned carbon nanotube@graphite architecture[J]. Carbon,2016,104:157-168. doi: 10.1016/j.carbon.2016.04.001 [5] Zhang L, Wei Q, An J, et al. Construction of 3D interconnected diamond networks in Al-matrix composite for high-efficiency thermal management[J]. Chemical Engineering Journal,2020,380:122551. doi: 10.1016/j.cej.2019.122551 [6] Chu K, Wang X H, Li Y B, et al. Thermal properties of graphene/metal composites with aligned graphene[J]. Materials & Design,2018,140:85-94. [7] Chu K, Wang X H, Wang F, et al. Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network[J]. Carbon,2018,127:102-112. doi: 10.1016/j.carbon.2017.10.099 [8] Renteria J, Legedza S, Salgado R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications[J]. Materials & Design,2015,88:214-221. [9] Liu B, Zhang D Q, Li X F, et al. The microstructures and properties of graphite flake/copper composites with high volume fractions of graphite flake[J]. New Carbon Materials,2020,35(1):58-65. doi: 10.1016/S1872-5805(20)60475-9 [10] Zhang R, He X, Chen Z, et al. Influence of Ti content on the microstructure and properties of graphite flake/Cu-Ti composites fabricated by vacuum hot pressing[J]. Vacuum,2017,141:265-271. doi: 10.1016/j.vacuum.2017.04.026 [11] Wei N, Zhou C, Li Z, et al. Thermal conductivity of Aluminum/Graphene metal-matrix composites: From the thermal boundary conductance to thermal regulation[J]. Materials Today Communications,2022,30:103147. doi: 10.1016/j.mtcomm.2022.103147 [12] Zarei F, Sheibani S. Comparative study on carbon nanotube and graphene reinforced Cu matrix nanocomposites for thermal management applications[J]. Diamond and Related Materials,2021,113:108273. doi: 10.1016/j.diamond.2021.108273 [13] Saboori A, Moheimani S, Pavese M, et al. New nanocomposite materials with improved mechanical strength and tailored coefficient of thermal expansion for electro-packaging applications[J]. Metals,2017,7(12):536. doi: 10.3390/met7120536 [14] Zhang L, Chen W, Luo G, et al. Low-temperature densification and excellent thermal properties of W–Cu thermal-management composites prepared from copper-coated tungsten powders[J]. Journal of Alloys and Compounds,2014,588:49-52. doi: 10.1016/j.jallcom.2013.11.003 [15] Zhang R, He X, Chen H, et al. Effect of alloying element Zr on the microstructure and properties of graphite flake/Cu composites fabricated by vacuum hot pressing[J]. Journal of Alloys and Compounds,2019,770:267-275. doi: 10.1016/j.jallcom.2018.08.107 [16] Qu X H, Zhang L, Mao W, et al. Review of metal matrix composites with high thermal conductivity for thermal management applications[J]. Progress in Natural Science: Materials International,2011,21(3):189-197. doi: 10.1016/S1002-0071(12)60029-X [17] Sidhu S, Kumar S, Batish A. Metal matrix composites for thermal management: A review[J]. Critical Reviews in Solid State & Materials Sciences,2016,41(2):132-157. [18] Han X H, Wang Q, Park Y G, et al. A review of metal foam and metal matrix composites for heat exchangers and heat sinks[J]. Heat Transfer Engineering,2012,33(12):991-1009. doi: 10.1080/01457632.2012.659613 [19] Chen J, Ren S, He X, et al. Properties and microstructure of nickel-coated graphite flakes/copper composites fabricated by spark plasma sintering[J]. Carbon,2017,121:25-34. doi: 10.1016/j.carbon.2017.05.082 [20] Chen X, Cheng P, Tang Z, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advance Science,2021,8(9):2001274. [21] Tao Z, Guo Q, Gao X, et al. Graphite fiber/copper composites with near-zero thermal expansion[J]. Materials & Design,2012,33:372-375. [22] Duan K, Li L, Hu Y, et al. Damping characteristic of Ni-coated carbon nanotube/copper composite[J]. Materials & Design,2017,133:455-463. [23] Andrey M A, Miroslaw J K, Lukasz C, et al. Diamond–tungsten based coating–copper composites with high thermal conductivity produced by Pulse Plasma Sintering[J]. Materials & Design,2015,76:97-109. [24] Gao X, Yue H, Guo E, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites[J]. Powder Technology,2016,301:601-607. doi: 10.1016/j.powtec.2016.06.045 [25] Wejrzanowski T, Grybczuk M, Chmielewski M, et al. Thermal conductivity of metal-graphene composites[J]. Materials & Design,2016,99:163-173. [26] Chen F, Ying J, Wang Y, et al. Effects of graphene content on the microstructure and properties of copper matrix composites[J]. Carbon,2016,96:836-842. doi: 10.1016/j.carbon.2015.10.023 [27] Liang C, Kumar S. Thermal transport in graphene supported on copper[J]. Journal of Applied Physics,2012,112(4):043502. doi: 10.1063/1.4740071 [28] Tan Z, Li Z, Fan G, et al. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J]. Materials & Design,2013,47:160-166. [29] Chen L, Huang Z, Kumar S. Phonon transmission and thermal conductance across graphene/Cu interface[J]. Applied Physics Letters,2013,103(12):123110. doi: 10.1063/1.4821439 [30] Li X, Tan C, Jiang J, et al. New construction of electron thermal conductive route for high-efficient heat dissipation of graphene/Cu composite[J]. Carbon,2021,177:107-114. doi: 10.1016/j.carbon.2021.01.157 [31] Wu W, Ren T, Liu X, et al. Creating thermal conductive pathways in polymer matrix by directional assembly of synergistic fillers assisted by electric fields[J]. Composites Communications,2022,35:101309. doi: 10.1016/j.coco.2022.101309 [32] Yao Y, Sun J J, Zeng X L, et al. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity[J]. Small,2018,14(13):1704044. doi: 10.1002/smll.201704044 [33] Li C, Zeng X L, Tan L Y, et al. Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity of polymer[J]. Chemical Engineering Journal,2019,368:79-87. doi: 10.1016/j.cej.2019.02.110 [34] Li A, Dong C, Dong W, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. ACS applied materials & interfaces,2018,10(38):32093-32101. [35] Jing R, Ren R P, Lv Y K. A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high- performance lithium-ion battery[J]. Chemical Engineering Journal,2018,353:419-424. doi: 10.1016/j.cej.2018.07.139 [36] Ekimov E A, Suetin N V, Popovich A F, et al. Thermal conductivity of diamond composites sintered under high pressures[J]. Diamond and Related Materials,2008,17(4-5):838-843. doi: 10.1016/j.diamond.2007.12.051 [37] Liu T, He X, Zhang L, et al. Fabrication and thermal conductivity of short graphite fiber/Al composites by vacuum pressure infiltration[J]. Journal of Composite Materials,2014,48(18):2207-2214. doi: 10.1177/0021998313495750 [38] Wang C Z, Gan X P, Tao J M, et al. Simultaneous achievement of high strength and high ductility in copper matrix composites with carbon nanotubes/Cu composite foams as reinforcing skeletons[J]. Nanotechnology,2019,31(4):045701. [39] Lee J H, Lee S H, Choi C, et al. A review of thermal conductivity data, mechanisms and models for manofluids[J]. International Journal of Micro-nano Scale Transport,2010,1(4):269-322. doi: 10.1260/1759-3093.1.4.269 [40] Han Z D, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science,2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004 [41] Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory[J]. Progress in Polymer Science,2016,61:1-28. doi: 10.1016/j.progpolymsci.2016.05.001 [42] Toberer E S, Baranowski L L, Dames C. Advances in thermal conductivity[J]. Annual Review of Materials Research,2012,42:179-209. doi: 10.1146/annurev-matsci-070511-155040 [43] Cao, Y, Fatemi, V, Fang S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature,2018,556:43-50. doi: 10.1038/nature26160 [44] Monje I E, Louis E, Molina J M. Optimizing thermal conductivity in gas-pressure infiltrated aluminum/diamond composites by precise processing control[J]. Composites Part A Applied Science and Manufacturing,2013,48(1):9-14. [45] Mehra N, Mu L, Ji T, et al. Thermal transport in polymeric materials and across composite interfaces[J]. Applied Materials Today,2018,12:92-130. doi: 10.1016/j.apmt.2018.04.004 [46] Zeng J L, Cao Z, Yang D W, et al. Thermal conductivity enhancement of Ag nanowires on an organic phase change material[J]. Journal of Thermal Analysis & Calorimetry,2010,101(1):385-389. [47] Ye W, Wei Q, Zhang L, et al. Macroporous diamond foam: A novel design of 3D interconnected heat conduction network for thermal management[J]. Materials & Design,2018,156:32-41. [48] Li A, Zhang C, Zhang Y F, Let al. Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications[J]. Polymers,2017,9(9):437. doi: 10.3390/polym9090437 [49] Yang J, Shen X, Yang W, et al. Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications[J]. Progress in Materials Science,2023,133:101054. doi: 10.1016/j.pmatsci.2022.101054 [50] Pietrak K, Winiewski T S. A review of models for effective thermal conductivity of composite materials[J]. Journal of Power Technology,2015,95(1):14-24. [51] Dai S, Li J, Lu N. Research progress of diamond/copper composites with high thermal conductivity[J]. Diamond and Related Materials,2020,108:107993. doi: 10.1016/j.diamond.2020.107993 [52] Progelhof R C, Throne J L, Ruetsch R R. Methods for predicting the thermal conductivity of composite systems: A Review[J]. Polymer Engineering and Science,1976,16(9):615-625. doi: 10.1002/pen.760160905 [53] Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems[J]. Industrial and Engineering Chemistry Fundamentals,1962,1(3):187-191. doi: 10.1021/i160003a005 [54] Lewis T B, Nielsen L E. Dynamic mechanical properties of particulate-filled composites[J]. Journal of Applied Polymer Science,1970,14(6):1449-1471. doi: 10.1002/app.1970.070140604 [55] Tavangar R, Molina J M, Weber L. Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast[J]. Scripta Materialia,2007,56(5):357-360. doi: 10.1016/j.scriptamat.2006.11.008 [56] Rayleigh J W. On the influence of ibstacles arranged in rectangular order upon the properties of a medium[J]. Philosophical Magazine,1892,34(211):481-502. [57] Hasselman D, Johnson L F. Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials,1987,21(6):508-515. doi: 10.1177/002199838702100602 [58] Thomas J R. Effective thermal conductivity of continuous matrix-spherical dispersed phase composite with single-point interfacial thermal contact: free molecular gas conduction in the gap[J]. Journal of Composite Materials,2007,41(3):267-279. doi: 10.1177/0021998306063366 [59] Devpura A, Phelan P E, Prasher R S. Size effects on the thermal conductivity of polymers laden with highly conductive filler particles size effects on the thermal conductivity of polymers laden with highly conductive filler particles[J]. Microscale Thermophysical Engineering,2001,5(3):177-189. doi: 10.1080/108939501753222869 [60] Matt C F, Cruz M E. Effective thermal conductivity of composite materials with 3-D microstructures and interfacial thermal resistance[J]. Numerical Heat Transfer, Part A:Applications,2007,53(6):577-604. doi: 10.1080/10407780701678380 [61] Agari Y, Ueda A, Nagai S. Thermal conductivities of composites in several types of dispersion systems[J]. Journal of Applied Polymer Science,1991,42(6):1665-1669. doi: 10.1002/app.1991.070420621 [62] Foygel M, Morris R D, Anez D, et al. Theoretical and computational studies of carbon nanotube composites and suspensions: Electrical and thermal conductivity[J]. Physical Review B,2005,71(10):4201. [63] Ji H, Sellan D, Pettes M, et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage[J]. Energy and Environmental Science,2014,7(3):1185-1192. doi: 10.1039/C3EE42573H [64] Xi S, Wang Z, Ying W, et al. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance[J]. Materials Horizons,2018,5:275-284. doi: 10.1039/C7MH00984D [65] Guo Y, Ruan K, Gu J. Controllable thermal conductivity in composites by constructing thermal conduction network[J]. Materials Today Physics,2021,20:100449. doi: 10.1016/j.mtphys.2021.100449 [66] Zhang Y, Heo Y J, Son Y R, et al. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials[J]. Carbon,2019,142:445-460. doi: 10.1016/j.carbon.2018.10.077 [67] Xu C Y, Miao M, Jiang X F, et al. Thermal conductive composites reinforced via advanced boron nitride nanomaterials[J]. Composites Communications,2018,10:103-109. doi: 10.1016/j.coco.2018.08.002 [68] Guo Y, Ruan K, Shi X, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Composites Science and Technology,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134 [69] Han X, Huang Y, Peng X, et al. 3D continuous copper networks coated with graphene in Al-matrix composites for efficient thermal management[J]. Composite Structures,2021,258:113177. doi: 10.1016/j.compstruct.2020.113177 [70] Lee M T, Chung C Y, Lin C M, et al. Effects of Ti addition on thermal properties of diamond/Ag–Ti composites fabricated by liquid sintering[J]. Materials Letters,2014,116:212-214. doi: 10.1016/j.matlet.2013.11.001 [71] Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites[J]. Scripta Materialia,2015,109:72-75. doi: 10.1016/j.scriptamat.2015.07.022 [72] Li C, Wang X, Wang L, et al. Interfacial characteristic and thermal conductivity of Al/diamond composites produced by gas pressure infiltration in a nitrogen atmosphere[J]. Materials & Design,2016,92:643-648. [73] Tan Z, Chen Z, Fan G, et al. Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with SiC and diamond[J]. Materials & Design,2016,90:845-851. [74] Yoshida K, Morigami H. Thermal properties of diamond/copper composite material[J]. Microelectronics Reliability,2004,44(2):303-308. doi: 10.1016/S0026-2714(03)00215-4 [75] Zhang R B, Chen X K, Wang L X, et al. Investigation on diamond/copper composites heat sink with high thermal conductivity[J]. Vacuum and Low Temperature,2012,18(4):210-214. [76] Liu T, He X, Liu Q, et al. Fabrication of short graphite fiber preforms for liquid metal infiltration[J]. Journal of Materials Engineering and Performance,2013,22:1649-1654. doi: 10.1007/s11665-012-0460-4 [77] Jiang Z, Ouyang T, Yang Y, et al. Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network[J]. Materials & Design,2018,143:177-184. [78] Jiang Z, Ouyang T, Ding L, et al. 3D self-bonded porous graphite fiber monolith for phase change material composite with high thermal conductivity[J]. Chemical Engineering Journal,2022,438:135496. doi: 10.1016/j.cej.2022.135496 [79] Zhang Y, Lu Z, Yang Z, et al. Resilient carbon fiber network materials under cyclic compression[J]. Carbon,2019,155:344-352. doi: 10.1016/j.carbon.2019.08.070 [80] Wang K, Sun C, Wiafe B B, et al. Polyurethane template-based erythritol/graphite foam composite phase change materials with enhanced thermal conductivity and solar-thermal energy conversion efficiency[J]. Polymer,2022,256:125204. doi: 10.1016/j.polymer.2022.125204 [81] Zhang X J, Song J J, Su Y F, et al. Fabrication and tribological performance of copper/graphite self-lubricating composites with 3D bi-continuous structure[J]. Tribology,2022,42(4):12. [82] Karthik M, Faik A, D'Aguanno B. Graphite foam as interpenetrating matrices for phase change paraffin wax: A candidate composite for low temperature thermal energy storage[J]. Solar Energy Materials and Solar Cells,2017,172:324-334. doi: 10.1016/j.solmat.2017.08.004 [83] Zhang X, Xu Y, Wang M, et al. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites[J]. Nature Communication,2020,11(1):2775. doi: 10.1038/s41467-020-16490-4 [84] Qiao Z, Zhou T, Kang J, et al. Three-dimensional interpenetrating network graphene/copper composites with simultaneously enhanced strength, ductility and conductivity[J]. Materials Letters,2018,224:37-41. doi: 10.1016/j.matlet.2018.04.069 [85] Yang W, Wang C, Jiang B, et al. Lightweight 3D interconnected porous carbon with robust cavity skeleton derived from petroleum pitch for effective multi-band electromagnetic wave absorption[J]. Carbon,2022,200:390-400. doi: 10.1016/j.carbon.2022.08.069 [86] Xu F, Cui Y, Bao D, et al. A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites[J]. Chemical Engineering Journal,2020,388:124287. doi: 10.1016/j.cej.2020.124287 [87] Liu Z, Chen Y, Li Y, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale,2019,11:17600-17606. doi: 10.1039/C9NR03968F [88] Ma J, Shang T, Ren L, et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material[J]. Chemical Engineering Journal,2020,380:122550. doi: 10.1016/j.cej.2019.122550 [89] Pan Y, He X, Ren S, et al. High thermal conductivity of diamond/copper composites produced with Cu–ZrC double-layer coated diamond particles[J]. Journal of Materials Science,2018,53:8978-8988. doi: 10.1007/s10853-018-2184-9 [90] Hou L, Shen W X, Fang C, et al. High thermal conductivity of diamond/Al composites via high pressure and high temperature sintering[J]. Chinese Journal of High Pressure Physics,2020,34(5):9. [91] Chen H, Jia C, Li S. Interfacial characterization and thermal conductivity of diamond/Cu composites prepared by two HPHT techniques[J]. Journal of Materials Science,2012,47(7):3367-3375. doi: 10.1007/s10853-011-6180-6 [92] Kawk S R, Ring T A, Choi B S. A simple two-step fabrication route for Cu composite reinforced by three-dimensional graphene network[J]. Journal of Industrial and Engineering Chemistry,2019,70:484-488. doi: 10.1016/j.jiec.2018.11.011 [93] Li J, Chen X, Li W, et al. In situ synthesis of 3D interconnected graphene-reinforced copper composites[J]. Journal of Materials Engineering and Performance,2019,28:4265-4274. doi: 10.1007/s11665-019-04196-8 [94] Gao M, Gao P, Wang Y. Study on metallurgically prepared copper-coated carbon fibers reinforced aluminum matrix composites[J]. Metals and Materials International,2021,27:5425-5435. doi: 10.1007/s12540-020-00897-1 [95] Liu T, He X, Liu Q, et al. Effect of chromium carbide coating on thermal properties of short graphite fiber/Al composites[J]. Journal of Materials Science,2014,49:6705-6715. doi: 10.1007/s10853-014-8272-6 [96] Ma S, Zhao N, Shi C, et al. Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J]. Applied Surface Science,2017,402:372-383. doi: 10.1016/j.apsusc.2017.01.078 [97] Xie Z, Xiao W, Guo H, et al. The microzone structure regulation of diamond/Cu-B composites for high thermal conductivity: Combining experiments and first-principles calculations[J]. Materials,2023,16(5):2021. doi: 10.3390/ma16052021 [98] Cantürk S B, Kováčik J. Review of recent development in copper/carbon composites prepared by infiltration technique[J]. Energies,2022,15(14):5227. doi: 10.3390/en15145227 [99] Huang Y, Ouyang Q, Zhu C, et al. Effect of alumina coating and extrusion deformation on microstructures and thermal properties of short carbon fibre-Al composites[J]. Bulletin of Materials Science,2018,41:1-9. doi: 10.1007/s12034-017-1515-9 [100] Zhang H, Qi Y, Li J, et al. Effect of Zr content on mechanical properties of diamond/Cu-Zr composites produced by gas pressure infiltration[J]. Journal of Materials Engineering and Performance,2018,27:714-720. doi: 10.1007/s11665-017-3097-5 [101] Shen X Y, He X B, Ren S B, et al. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J]. Journal of Alloys and Compounds,2012,529:134-139. doi: 10.1016/j.jallcom.2012.03.045 [102] Li N, Zhang Y, Zhang Y, et al. Realizing ultrahigh thermal conductivity in bimodal-diamond/Al composites via interface engineering[J]. Materials Today Physics,2022,28:100901. doi: 10.1016/j.mtphys.2022.100901 -