留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Large-scale synthesis of 3D ordered microporous carbon at low temperature using cobalt ions exchanged zeolite Y as a template

ZHAO Hong-wei LI Li-xiang ZUO Huai-yang QU Di ZHANG Han TAO Lin SUN Cheng-guo JU Dong-ying AN Bai-gang

赵宏伟, 李莉香, 左怀洋, 曲迪, 张涵, 陶林, 孙呈郭, 巨东英, 安百钢. 基于钴离子交换分子筛为模板的三维有序微孔炭低温合成及其宏量制备. 新型炭材料(中英文), 2023, 38(5): 861-874. doi: 10.1016/S1872-5805(23)60776-0
引用本文: 赵宏伟, 李莉香, 左怀洋, 曲迪, 张涵, 陶林, 孙呈郭, 巨东英, 安百钢. 基于钴离子交换分子筛为模板的三维有序微孔炭低温合成及其宏量制备. 新型炭材料(中英文), 2023, 38(5): 861-874. doi: 10.1016/S1872-5805(23)60776-0
ZHAO Hong-wei, LI Li-xiang, ZUO Huai-yang, QU Di, ZHANG Han, TAO Lin, SUN Cheng-guo, JU Dong-ying, AN Bai-gang. Large-scale synthesis of 3D ordered microporous carbon at low temperature using cobalt ions exchanged zeolite Y as a template. New Carbon Mater., 2023, 38(5): 861-874. doi: 10.1016/S1872-5805(23)60776-0
Citation: ZHAO Hong-wei, LI Li-xiang, ZUO Huai-yang, QU Di, ZHANG Han, TAO Lin, SUN Cheng-guo, JU Dong-ying, AN Bai-gang. Large-scale synthesis of 3D ordered microporous carbon at low temperature using cobalt ions exchanged zeolite Y as a template. New Carbon Mater., 2023, 38(5): 861-874. doi: 10.1016/S1872-5805(23)60776-0

基于钴离子交换分子筛为模板的三维有序微孔炭低温合成及其宏量制备

doi: 10.1016/S1872-5805(23)60776-0
基金项目: 国家自然科学基金(51872131,51972156,51672117,51672118);辽宁省特聘教授项目;辽宁省博士科研启动基金(2023-BS-184);辽宁科技大学人才项目(6003000315)
详细信息
    通讯作者:

    李莉香,教授. E-mail:lxli2005@126.com

    安百钢,教授. E-mail:bgan@ustl.edu.cn

  • 中图分类号: TB33

Large-scale synthesis of 3D ordered microporous carbon at low temperature using cobalt ions exchanged zeolite Y as a template

Funds: We acknowledge the financial support by grants from the National Natural Science Foundation of China (51872131, 51972156, 51672117, 51672118), the distinguished professor project of the education department of Liaoning, the Startup Fund for Doctoral Research of Liaoning (2023-BS-184), and the University of Science And Technology Liaoning Talent Project Grants (6003000315)
More Information
  • 摘要: 沸石模板炭(ZTCs)由于具有独特的三维有序微孔结构和高比表面积,在吸附和能量存储等方面表现出诸多优异的性能。然而,ZTCs有效合成方法的缺乏和大规模合成的困难严重限制其发展。本文通过使用钴离子交换的Y型沸石分子筛作为模板,采用直接乙炔化学气相沉积(CVD)的方法,开发出一种低温CVD合成及宏量制备ZTCs的简单工艺路线。沸石中的钴离子作为Lewis酸位点,通过d-π配位效应催化乙炔在400 °C低温热解,使碳沉积选择性地发生在沸石内部。通过对CVD温度和时间的优化,ZTC(Co)-400-8h具有优异的三维有序微孔结构、高比表面积(3000 m2 g−1)、大的孔体积(1.33 cm3 g−1),CO2吸附容量和选择性分别为2.78 mmol g−1(25°C,100 kPa)和98。本工作中,利用简单的合成方法实现了高质量ZTCs的宏量制备,使用10.0 g/批次沸石模板制备的ZTC(Co)-400-8h(L)的比表面和孔体积可达到2700 m2 g−1和1.27 cm3 g−1
  • FIG. 2650.  FIG. 2650.

    FIG. 2650..  FIG. 2650.

    1.  Schematic diagram for the synthesis of ZTC(Co) and in-situ CNTs/ ZTC(Co) by using CoY zeolite as a template and acetylene as a carbon source

    Figure  1.  (a) XPS survey spectra of the NaY and CoY zeolite. (b) Small-angle and (c) wide-angle XRD patterns of the NaY zeolite, CoY zeolite (before calcination) and CoY zeolite. (d-f) SEM images of NaY zeolite, CoY zeolite (before calcination) and CoY zeolite, respectively

    Figure  2.  (a) Amount of carbon deposition in the NaY and CoY zeolite plotted as a function of the different temperatures with using acetylene/Ar gas for 1 h. (b) Small-angle and (c) wide-angle XRD patterns of all ZTC(Co)-A-1h samples. SEM images: (d) Secondary electron and (e, f) back scattered electron images of ZTC(Co)-400-1h

    Figure  3.  (a) N2 adsorption-desorption isotherms and (b) NLDFT pore size distribution of different ZTC(Co)-A-1h samples

    Figure  4.  (a) TGA curves of C/CoY-400-1h, C/CoY-400-2h, C/CoY-400-4h and C/CoY-400-8h. (b) Small-angle XRD patterns, (c) N2 adsorption-desorption isotherms and (d) NLDFT pore size distribution of ZTC(Co)-400-1h, ZTC(Co)-400-2h, ZTC(Co)-400-4h and ZTC(Co)-400-8h

    Figure  5.  (a, b) SEM images of ZTC(Co)-400-8h, (c, d) TEM images of ZTC(Co)-400-8h with different viewing directions

    Figure  6.  (a-d) CO2 adsorption isotherms (0, 25 and 50 °C) and N2 adsorption isotherms (25 °C, black hollow circular). (e) Comparison of CO2 adsorption properties at 25 °C. (f) Analysis of the plot of CO2 adsorption capacity, specific surface area (red), and total pore volume (blue). (g) Isosteric heat of CO2 adsorption (Qst). (h) Pore size distribution (0.4-1.0 nm) derived from CO2 adsorption isotherm (0 °C) by NLDFT method. (i) CO2/N2 selectivity calculated using IAST at 25 °C

    Figure  7.  (a-e) Photographs of quartz reactor for large-scale synthesis filled with a thick bed of CoY zeolite (10.0 g) sample. (f) XRD pattern of ZTC(Co)-400-8h(L)

    Table  1.   The SSA and pore volume from the N2 adsorption-desorption isotherms at −196 °C and synthesis condition for ZTC(Co)-400-B

    SamplesTimeaSSAbV1cV2d
    ZTC(Co)-400-1h122001.000.80
    ZTC(Co)-400-2h223901.050.82
    ZTC(Co)-400-4h425201.110.87
    ZTC(Co)-400-8h830001.331.03
    Note-Timea: CVD time (h), SSAb: BET specific surface area, m2 g−1, V1c: total pore volume, cm3 g−1, V2 d: micropore volume, cm3 g−1.
    下载: 导出CSV
  • [1] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58. doi: 10.1038/354056a0
    [2] Geim A K. Graphene: status and prospects[J]. Science,2009,324:1530-1534.
    [3] Wang A M, Ren J W, Shi B F, et al. A facile one-pot synthesis of mesoporous graphite-like carbon through the organic-organic co-assembly[J]. Microporous and Mesoporous Materials,2012,151(15):287-292.
    [4] Liu W L, Du L Y, Ju S L, et al. Encapsulation of red phosphorus in carbon nanocages with ultrahigh content for high-capacity and long cycle life sodium-ion batteries[J]. ACS Nano,2021,15(3):5679-5688. doi: 10.1021/acsnano.1c00924
    [5] Liu L, Kan Y Y, Gao K, et al. Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17. 3% efficiency and high reproductivity[J]. Advanced Materials,2020,32(11):1907604. doi: 10.1002/adma.201907604
    [6] Zhao H W, Xing T Y, Li L X, et al. Synthesis of cobalt and nitrogen co-doped carbon nanotubes and its ORR activity as the catalyst used in hydrogen fuel cells[J]. International Journal of Hydrogen Energy,2019,44(44):25180-25187.
    [7] An B G, Xu S F, Li L X, et al. Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance[J]. Journal of Materials Chemistry A,2013,1(24):7222-7228. doi: 10.1039/c3ta10830a
    [8] Mauter M S, Elimelech M. Environmental applications of carbon-based nanomaterials[J]. Environmental Science & Technology,2008,42(16):5843-5859.
    [9] Graboski A M, Zakrzevski C A, Shimizu F M, et al. Electronic nose based on carbon nanocomposite sensors for clove essential oil detection[J]. ACS Sensors,2020,5(6):1814-1821. doi: 10.1021/acssensors.0c00636
    [10] Zhu C Y, Ye Y W, Guo X, et al. Design and synthesis of carbon-based nanomaterials for electrochemical energy storage[J]. New Carbon Materials,2022,37(1):59-92.
    [11] Zhou Y, Jia Z X, Zhao S Y, et al. Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors[J]. Chemical Engineering Journal,2021,416(15):129500.
    [12] Li X Y, Sari H M K, Niu L J, et al. Porous graphene nanocages with wrinkled surface enhancing electrocatalytic activity of lithiun/sulfuryl chloride batteries[J]. RSC Advances,2021,11(16):9469-9475. doi: 10.1039/D0RA10756E
    [13] Zhang X L, Ruan Z Q, He Q T, et al. Three-dimensional (3D) nanostructure skeleton substrate composed of hollow carbon fiber/carbon nanosheet/ZnO for stable lithium anode[J]. ACS Applied Materials & Interfaces,2021,13(2):3078-3088.
    [14] Cheng H Y, Cheng P Y, Chuah X F, et al. Porous N-doped carbon nanostructure integrated with mesh current collector for Li-ion based energy storage[J]. Chemical Engineering Journal,2019,374(15):201-210.
    [15] Zhao H W, Zhang Y Q, Li L X, et al. Synthesis of an ordered porous carbon with the dual nitrogen-doped interface and its ORR catalysis performance[J]. Chinese Chemical Letters,2021,32(1):140-145. doi: 10.1016/j.cclet.2020.11.035
    [16] Zhu Y, Miyake K, Shu Y, et al. Single atomic Co coordinated with N in microporous carbon for oxygen reduction reaction obtained from Co/2-methylimidazole anchored to Y zeolite as a template[J]. Materials Today Chemistry,2021,20:100410. doi: 10.1016/j.mtchem.2020.100410
    [17] Konnov S V, Dubray F, Clatworthy E B, et al. Novel strategy for the synthesis of ultra-stable single-site Mo-ZSM-5 zeolite nanocrystals[J]. Angewandte Chemie International Edition,2020,59(44):19553-19560. doi: 10.1002/anie.202006524
    [18] Cui X X, Xu Y S, Chen L L, et al. Ultrafine Pd nanoparticles supported on zeolite-templated mesocellular graphene network via framework aluminum mediation: an advanced oxygen reduction electrocatalyst[J]. Applied Catalysis B:Environmental,2019,244:957-964. doi: 10.1016/j.apcatb.2018.12.026
    [19] Nueangnoraj K, Ruiz-Rosas R, Nishihara H, et al. Carbon–carbon asymmetric aqueous capacitor by pseudocapacitive positive and stable negative electrodes[J]. Carbon,2014,67:792-794. doi: 10.1016/j.carbon.2013.10.011
    [20] Nomura K, Nishihara H, Yamamoto M, et al. Force-driven reversible liquid–gas phase transition mediated by elastic nanosponges[J]. Nature Communications,2019,10:2559. doi: 10.1038/s41467-019-10511-7
    [21] Tang R, Taguchi K, Nishihara H, et al. Insight into the origin of carbon corrosion in positive electrodes of supercapacitors. Journal of Materials Chemistry A, 2019, 7(13): 7480-7488.
    [22] Dubey R J C, Nüssli J, Piveteau L, et al. Zeolite-templated carbon as the cathode for a high energy density dual-ion battery[J]. ACS Applied Materials & Interfaces,2019,11(19):17686-17696.
    [23] Itoi H, Nishihara H, Kogure T, et al. Three-dimensionally arrayed and mutually connected 1. 2-nm nanopores for high-performance electric double layer capacitor[J]. Journal of the American Chemical Society,2011,133(5):1165-1167. doi: 10.1021/ja108315p
    [24] Choi S, Kim H, Lee S, et al. Large-scale synthesis of high-quality zeolite-templated carbons without depositing external carbon layers[J]. Chemical Engineering Journal,2015,280(15):597-605.
    [25] Nishihara H, Kyotani T. Zeolite-templated carbons-three-dimensional microporous graphene frameworks[J]. Chemical Communications,2018,54(45):5648-5673. doi: 10.1039/C8CC01932K
    [26] Kyotani T, Nagai T, Inoue S, et al. Formation of new type of porous carbon by carbonization in zeolite nanochannels[J]. Chemistry of Materials,1997,9(2):609-615. doi: 10.1021/cm960430h
    [27] Matsuoka K, Yamagishi Y, Yamazaki T, et al. Extremely high microporosity and sharp pore size distribution of a large surface area carbon prepared in the nanochannels of zeolite Y[J]. Carbon,2005,43(3):876-879.
    [28] Ma Z X, Kyotani T, Tomita Akira. Preparation of a high surface area microporous carbon having the structural regularity of Y zeolite[J]. Chemical Communication, 2000, 2365-2366.
    [29] Ma Z X, Kyotani T, Tomita Akira. Synthesis methods for preparing microporous carbons with a structural regularity of zeolite Y[J]. Carbon,2002,40(13):2367-2374. doi: 10.1016/S0008-6223(02)00120-3
    [30] Hou P X, Yamazaki T, Orikasa H, et al. An easy method for the synthesis of ordered microporous carbons by the template technique[J]. Carbon,2005,43(12):2624-2627. doi: 10.1016/j.carbon.2005.05.001
    [31] Zhao H W, Li L X, Liu Y Y, et al. Synthesis and ORR performance of nitrogen-doped ordered microporous carbon by CVD of acetonitrile vapor using silanized zeolite as template[J]. Applied Surface Scienve,2020,504(28):144438.
    [32] Kim K, Lee T, Kwon Y, et al. Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template[J]. Nature,2016,535:131-135. doi: 10.1038/nature18284
    [33] Kim K, Kwon Y, Lee Y, et al. Facile large-scale synthesis of three-dimensional graphene-like ordered microporous carbon via ethylene carbonization in CaX zeolite template[J]. Carbon 2017, 118: 517-523.
    [34] Moon G H, Bähr A, Tüysüz H. Structural engineering of 3D carbon materials from transition metal ion-exchanged Y zeolite templates[J]. Chemistry of Materials,2018,30(11):3779-3788. doi: 10.1021/acs.chemmater.8b00861
    [35] Han J, Zhang L, Zhao B, et al. The N-doped activated carbonderived from sugarcane bagasse for CO2 adsorption[J]. Industrial Crops and Products,2019,128:290-297. doi: 10.1016/j.indcrop.2018.11.028
    [36] Bhadra B N, Seo P W, Jhung S H. Adsorption of diclofenac sodium from water using oxidized activated carbon[J]. Chemical Engineering Journal,2016,301(1):27-34.
    [37] Jin Q Q, Fang D, Ye Y L, et al. Cu, Co, or Ni species in exchanged Y zeolite catalysts and their denitration performance for selective catalytic reduction by ammonia[J]. Applied Surface Science,2022,600(30):154075.
    [38] Shilina M I, Rostovshchikova T N, Nikolaev S A, et al. Polynuclear Co-oxo cations in the catalytic oxidation of CO on Co-modified ZSM-5 zeolites[J]. Materials Chemistry and Physics,2019,223(1):287-298.
    [39] Balahmar N, Lowbridge A M, Mokaya R. Templating of carbon in zeolites under pressure: synthesis of pelletized zeolite templated carbons with improved porosity and packing density for superior gas (CO2 and H2) uptake properties[J]. Journal of Materials Chemistry A,2016,4(37):14254-14266. doi: 10.1039/C6TA06176A
    [40] Nishihara H, Ittisanronnachai S, Itoi H, et al. Experimental and theoretical studies of hydrogen/deuterium spillover on Pt-loaded zeolite-templated carbon[J]. The Journal of Physical Chemistry C,2014,118(18):9551-9559. doi: 10.1021/jp5016802
    [41] Konwar R J, De M. Effects of synthesis parameters on zeolite templated carbon for hydrogen storage application[J]. Microporous and Mesoporous Materials,2013,175(15):16-24.
    [42] Ania C O, Khomenko V, Raymundo-Piñero E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Advanced Functional Materials,2007,17(11):1828-1836. doi: 10.1002/adfm.200600961
    [43] Yang Z X, Xia Y D, Mokaya R. Hollow shells of high surface area graphitic N-doped carbon composites nanocast using zeolite templates[J]. Microporous and Mesoporous Materials,2005,86(1-3):69-80. doi: 10.1016/j.micromeso.2005.05.055
    [44] Eveleens C A, Irle S, Page A J. How does acetonitrile modulate single-walled carbon nanotube diameter during CVD growth[J]. Carbon,2019,146:535-541. doi: 10.1016/j.carbon.2019.02.027
    [45] Miao Z C, Meng J, Liang M F, et al. In-situ CVD synthesis of Ni@N-CNTs/carbon paper electrode for electro-reduction of CO2[J]. Carbon,2021,172:324-333. doi: 10.1016/j.carbon.2020.10.044
    [46] Itoi H, Kasai Y, Morishita K, et al. Facile synthesis of high surface area zeolite-templated carbons using divinyblenzene and propylene as carbon sources[J]. Microporous and Mesoporous Materials,2021,326:111378. doi: 10.1016/j.micromeso.2021.111378
    [47] Zaretskiy S N, Hong Y K, Ha D H, et al. Growth of carbon nanotubes from Co nanoparticles and C2H2 by thermal chemical vapor deposition[J]. Chemical Physics Letters,2003,372(1-2):300-305. doi: 10.1016/S0009-2614(03)00405-6
    [48] Nishihara H, Fujimoto H, Itoi H, et al. Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels[J]. Carbon,2018,129:854-862. doi: 10.1016/j.carbon.2017.12.055
    [49] Madison L, Heitzer H, Russell C, et al. Atomistic simulations of CO2 and N2 within cage-type silica zeolites[J]. Langmuir,2011,27(5):1954-1963. doi: 10.1021/la104245c
    [50] Mehio N, Dai S, Jiang D. Quantum mechanical basis for kinetic diameters of small gaseous molecules[J]. The Journal of Physical Chemistry A,2014,118(6):1150-1154. doi: 10.1021/jp412588f
    [51] Sakamoto H, Fujimori T, Li X L, et al. Cycloparaphenylene as a molecular porous carbon solid with uniform pores exhibiting adsorption-induced softness[J]. Chemical Science,2016,7(7):4204-4210. doi: 10.1039/C6SC00092D
    [52] Zhang Y Y, Zhang S N, Wang Z C, et al. Determination of the absolute CH4 adsorption using simplified local density theory and compariosn with the modified Langmuir adsorption model[J]. RSC Advances,2018,8(72):41509-41516. doi: 10.1039/C8RA08586B
    [53] Li H J, Wang S C, Zeng Q, et al. Effects of pore structure of different rank coals on methane adsorption heat[J]. Processes,2021,9(11):1971. doi: 10.3390/pr9111971
    [54] García-Díez E, Castro-Muñiz A, Paredes J I, et al. CO2 capture by novel hierarchical activated ordered micro-mesoporous carbons derived from low value coal tar products[J]. Microporous and Mesoporous Materials,2021,318:110986. doi: 10.1016/j.micromeso.2021.110986
    [55] Wang X J, Yuan B Q, Zhou X, et al. Novel glucose-based adsorbents (Glc-Cs) with high CO2 capacity and excellent CO2/CH4/N2 adsorption selectivity[J]. Chemical Engineering Journal,2017,327:51-59. doi: 10.1016/j.cej.2017.06.074
    [56] Li D, Chen Y L, Zheng M, et al. Hierarchically structured porous nitrogen-doped carbon for highly selective CO2 capture[J]. ACS Sustainable Chemistry & Engineering,2016,4(1):298-304.
    [57] Kim Y K, Kim G M, Lee J W. Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture[J]. Journal of Materials Chemistry A,2015,3(20):10919-10927. doi: 10.1039/C5TA01776A
  • 20230505supportting imformation.pdf
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  306
  • HTML全文浏览量:  125
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 录用日期:  2023-06-25
  • 修回日期:  2023-06-25
  • 网络出版日期:  2023-08-28
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回