Electrode for Microsupercapacitors based on MoS2 Modificated Reduced Graphene Oxide Aerogels achieving by 3D Printing
-
摘要: 微型超级电容器(MSCs)具有高功率密度和卓越的循环性能,引起了广泛的兴趣,并提供了广泛的潜在应用。然而,制备具有极高表面电容和能量密度的MSCs电极仍然存在挑战。本研究使用还原石墨烯气凝胶(GA)和二硫化钼(MoS2)作为材料,结合三维打印和表面修饰方法成功构建了具有超高表面电容和能量密度的MSCs电极。通过三维打印技术,我们获得了具有稳定宏观结构和GA交联微孔结构的电极。此外,我们采用溶液法在三维打印电极表面加载二硫化钼纳米片,进一步提高了电化学性能。所制备电极的表面电容达到3.99 F cm−2,功率密度为194 µW cm−2,能量密度为1997 mWh cm−2,表现出卓越的电化学性能和循环稳定性。这项研究为制备具有高表面电容和高能量密度的微型超级电容器电极提供了一种简单高效的方法,使其成为便携电子设备的理想选择。这项研究在MSCs电极领域具有重要的创新意义。Abstract: The high power density and excellent cyclic performance of micro-supercapacitors (MSCs) have garnered significant interest and offer a broad array of potential applications. However, there are still challenges in preparing MSCs electrodes with extremely high area capacitance and energy density. In this study, reduced graphene oxide aerogel (GA) and MoS2 were used as materials, combined with 3D printing and surface modification methods, and MSCs electrodes with ultra-high area capacitance and energy density were successfully constructed. Through 3D printing technology, we obtained electrodes with stable macro structure and GA crosslinked micropore structure. In addition, we used the solution method to load molybdenum disulfide nanosheets on the surface of the 3D printed electrode, further improving the electrochemical performance. The surface capacitance of the prepared electrode reached 3.99 F cm−2, the power density was 194 µW cm−2, and the energy density was 1997 mWh cm−2, showing excellent electrochemical performance and cycle stability. This research provides a simple and efficient method for preparing micro supercapacitor electrodes with high surface capacitance and high energy density, making them ideal for portable electronic devices. This research has important innovative significance in the field of MSCs electrodes.
-
Key words:
- 3D printing /
- Surface modified /
- High areal capacitance /
- High energy density /
- Supercapacitor
-
Figure 3. Rheological properties of the formulated ink in (a) viscosity versus shearing rate and (b) storage and loss modulus versus shear stress. Raman spectra of raw materials (c) GO and GA. Diffraction XRD patterns collected in 2θ scan of (d) GO, GA and 3DPE. XPS high-resolution scans of (e) C 1s of GO, (f) C 1s of GA, (g) C 1s of 3DPE
Figure 4. (a) The galvanostatic charge-discharge curves at a current density of 1 A g−1 and (b) the cycling voltammetry curves at a scanning rate of 10 mV s−1 of 3DPE with different layers. (c) The areal and (d) gravimetric capacities at different current density of 3DPE with different layers. (e) The areal and (f) gravimetric capacities at a current density of 1 A g−1 of 3DPE with different layers. (g) Impedance Nyquist plots of 3DPE with different layers. (h) Cycling stability of 3DPE-4 at a current density of 1 A g−1
Figure 7. (a) The gravimetric and (b) areal capacities at a current density of 1 A g−1 of 3DPE-4 and Mo-3DPE-4. (c) The cycling voltammetry curves at a scanning rate of 10 mV s−1 and (d) the galvanostatic charge-discharge curves at a current density of 1 A g−1 of 3DPE-4 and Mo-3DPE-4. (e) Impedance Nyquist plots of 3DPE-4 and Mo-3DPE-4. (f) The contribution of Mo-3DPE at different scan rate. (g) Cycling stability of Mo-3DPE-4 at a current density of 1 A g−1
-
[1] R. C. Zhu, Toward Fully Processable Micro-supercapacitors[J]. Joule. 5 (2021) 2257-2258. [2] Zhou X A, Zhang F L, Fu X L, et al. Utilizing Fast Ion Conductor for Singel-crystal Ni-rich Cathodes to Achieve Dual-functional Modification of Conductor Network Constructing and Near-surface doping[J]. Energy Storage Materials. 52 (2022) 19-28. [3] Zhang F, Li Z G, Xu M J, et al. A Review of 3D Printed Porous Ceramics. Journal of the European ceramic society. 42 (2022) 3351-3373. [4] Ma J X, Zheng S H, Chi L P, et al. 3D Printing Flexible Sodium-Ion Microbatteries with Ultrahigh Areal Capacity and Robust Rate Capability[J]. Advanced Materials. 34 (2022) 39. [5] Guo B B, Liang G J, Yu S X, et al. 3D Printing of Reduced Graphene Oxide Aerogels for Energy Storage Devices: A Paradigm from Materials and Technologies to Applications[J]. Energy Storage Materials . 39 (2021) 146–165. [6] Long J W, Dunn B, Rolison D R, et al. 3D Architectures for Batteries and Electrodes[J]. Advanced Energy Materials. 10, (2020) 6. [7] Yuan J, Qiu M, Chen J X, et al. High Mass Loading 3D-Printed Sodium-Ion Hybrid Capacitors[J]. Advanced Functional Materials. 32 (2022) 2203732. [8] Lin D, Chandrasekaran S, Forien J B, et al. 3D-Printed Graded Electrode with Ultrahigh MnO2 Loading for Non-Aqueous Electrochemical Energy Storage[J]. Advanced Energy Materials. (2023) 2300408. [9] Mo T M, Wang Z X, Zeng L, et al. Energy Storage Mechanism in Supercapacitors with Porous Graphdiynes: Effects of Pore Topology and Electrode Metallicity[J]. Advanced Materials. 35 (2023) 2301118. [10] Yue C A, Kang H, Jiang F X, et al. The Construction of Hierarchical PEDOT@MoS2 Nanocomposite for High-performance Supercapacitor-ScienceDirect[J]. Applied Surface Science. 546 (2021) 149088. [11] Ali B A, Omar A A, Khalil A G, et al. Untapped Potential of Polymorph MoS2: Tuned Cationic Intercalation for High-Performance Symmetric Supercapacitors[J]. ACS Applied Materials & Interfaces. 11 (2019) 33955−33965. [12] Zhou H J, Zhu G Y, Dong S Y, et al. Ethanol-Induced Ni2+-Intercalated Cobalt Organic Frameworks on Vanadium Pentoxide for Synergistically Enhancing the Performance of 3D-Printed Micro-Supercapacitors[J]. Advanced Materials. 35 (2023) 2211523. [13] Clerici F, Fontana M, Bianco S, et al. Lamberti, In situ MoS2 Decoration of Laser-Induced Graphene as Flexible Supercapacitor Electrodes[J]. ACS Applied Materials & Interfaces. 8 (2016) 10459-10465. [14] Asbani B, Buvat G, Freixas J, et al. Ultra-high Areal Capacitance and High Rate Capability RuO2 Thin Film Electrodes for 3D Micro-supercapacitors[J]. Energy Storage Materials. 42 (2021) 259-267. [15] Yang W, He L, Tian X C, et al. Carbon-MEMS-Based Alternating Stacked MoS2@rGO-CNT Micro-Supercapacitor with High Capacitance and Energy Density[J]. Small. 13 (2017) 1700639. [16] Li D D, Yang S, Chen X, et al. 3D Wearable Fabric-Based Micro-Supercapacitors with Ultra-High Areal Capacitance[J]. Advanced Functional Materials. 31 (2021) 2107484. [17] Gao W L, Michalička J, Pumera M. Hierarchical Atomic Layer Deposited V2O5 on 3D Printed Nanocarbon Electrodes for High-Performance Aqueous Zinc-Ion Batteries[J]. Small. 18 (2022) 2105572. [18] Jang J S, Jung H J, Chong S Y, et al. 2D Materials Decorated with Ultra-Thin and Porous Graphene Oxide for High Stability and Selective Surface Activity[J]. Advanced Materials. 32 (2020) 10. [19] Li P Z, Chen N, Al-Hamry A, et al. Inkjet-printed MoS2-based 3D-structured Electrocatalysts on Cu Films for Ultra-efficient Hydrogen Evolution Reaction[J]. Chemical Engineering Journal. 457 (2023) 141289. [20] Zhang W, Liu H Z, Zhang X N, et al. 3D Printed Micro-Electrochemical Storage Devices: From Design to Integration[J]. Advanced Functional Materials. 31 (2021) 2104909. [21] Ma J X, Zheng S H, Cao Y X, et al. Aqueous MXene/PH1000 Hybrid Inks for Inkjet-Printing Micro-Supercapacitors with Unprecedented Volumetric Capacitance and Modular Self-Powered Microelectronics[J]. Advanced Energy Materials. 11 (2021) 23. [22] Biswas R K, Vijayaraghavan R K, McNally P, et al. Graphene growth kinetics for CO2 laser carbonization of polyimide[J]. Materials Letters,2022,307:131097. doi: 10.1016/j.matlet.2021.131097 [23] Yu M, Feng X L. Thin-Film Electrode-Based Supercapacitors[J]. Joule. 3 (2019) 338-360. [24] Li X L, Ling S W, Zeng L, et al. Directional Freezing Assisted 3D Printing to Solve a Flexible Battery Dilemma: Ultrahigh Energy/Power Density and Uncompromised Mechanical Compliance[J]. Advanced Energy Materials. 12 (2022) 8. [25] Manjakkal L, Pullanchiyodan A, Yogeswaran N, et al. A Wearable Supercapacitor Based on Conductive PEDOT: PSS-Coated Cloth and a Sweat Electrolyte[J]. Advanced Materials. 32 (2020) 13. [26] Huang J, Wu P Y. Controlled Assembly of Luminescent Lanthanide-Organic Frameworks via Post-Treatment of 3D-Printed Objects[J]. Nano-Micro Letters. 13 (2021) 309-322. [27] Sohouli E, Adib K, Maddah B, et al. Preparation of a Supercapacitor Electrode Based on Carbon Nano-onions/manganese Dioxide/iron Oxide Nanocomposite[J]. Journal of Energy Storage. 52 (2022) 104987. [28] Yang H, Wan Y, Sun K, et al. Reconciling Mass Loading and Gravimetric Performance of MnO2 Cathodes by 3D-Printed Carbon Structures for Zinc-Ion Batteries[J]. Advanced Functional Materials. (2023) 2215076. [29] He H N, Zeng L, Luo D, et al. 3D Printing of Electron/Ion-Flux Dual-Gradient Anodes for Dendrite-Free Zinc Batteries[J]. Advanced Materials. 35 (2023) 2211498. [30] Meng Q, Du C C, Xu Z Y, et al. Siloxene-Reduced Graphene Oxide Composite Hydrogel for Supercapacitors[J]. Chemical Engineering Journal. 393 (2020) 124684. [31] Zhang F L, Wang C, Zhao D N, et al. Synergistic Effect of Sulfolane and Lithium Difluoro(oxalate)borate on Improvement of Compatibility for LiNi0.8Co0.15Al0.05O2 Electrode[J]. Electrochimica Acta. 337 (2020) 135727. [32] Zhou G Q, Li M C, Liu C Z, et al. 3D Printed Nitrogen-Doped Thick Carbon Architectures for Supercapacitor: Ink Rheology and Electrochemical Performance[J]. Advanced Science. 10 (2023) 2206320. [33] Zhang M R, Xu T Z, Wang D, et al. A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature[J]. Advanced Materials. (2023) 2209963. [34] Teng W L, Zhou Q Q, Wang X K, et al. Enhancing Ions/Electrons Dual Transport in rGO/PEDOT: PSS Fiber for High-performance Supercapacitor[J]. Carbon. 189 (2021) 284-292. [35] B. Yao, Q. Y. Cui, A. Cardenas, et al. , High-stability Conducting Polymer-based Conformal Electrodes for Bio-/iono-electronics[J]. Materials Today. 53 (2022) 84-96. [36] Bießmann L, Kreuzer L P, Widmann T, et al. Monitoring the Swelling Behanior of PEDOT: PSS Electrodes under High Humidity Conditions[J]. ACS Applied Materials & Interfaces. 10 (2018) 9865-9872. [37] Dingler C, Waiter R, Gompf B, et al. In Situ Monitoring of Optical Constants, Conductivity, and Swelling of PEDOT: PSS from Doped to the Fully Neutral State[J]. Macromolecules. 55 (2022) 1600-1608. [38] Zhang G L, Zhang R F, Zang R Q, et al. 3D hetero-nanostructured Electrode Constructed on Carbon Fiber Paper with 2D 1T-MoS2/1D-Cu(OH)2 for Flexible Asymmetric Solid-state Supercapacitors[J]. Journal of Power Sources. 523 (2022) 11. [39] Li B, Liang X, Li G, et al. Inkjet-Printed Ultrathin MoS2 Based Electrodes for Flexible In-Plane Microsupercapacitors[J]. ACS Applied Materials and Interfaces. 12 (2020) 39444-39454. [40] Chen H, Song T B, Tang L. B, et al. In-situ Growth of Vertically Aligned MoS2 Nanowalls on Reduced Graphene Oxide Enables a Large Capacity and Highly Stable Anode for Sodium Ion Storage[J]. Journal of Power Sources. 445 (2020). [41] Huo J H, Xue Y J, Zhang X J, et al. Hierarchical Porous Reduced Graphene Oxide Decorated with Molybdenum Disulfide for High-performance Supercapacitors[J]. Electrochimica Acta. 292 (2018) 639-645. [42] Xu S R, Zhu Q, Chen T, et al. Hydrothermal Synthesis of Co-doped-MoS2/Reduced Graphene Oxide Hybrids with Enhanced Electrochemical Lithium Storage Performances[J]. Materials Chemistry and Physics. 219 (2018) 399-410. [43] Yin B, Liang S Q, Yu D D, et al. Increasing Accessible Subsurface to Improving Rate Capability and Cycling Stability of Sodium-Ion Batteries[J]. Advanced Materials. 33 (2021) 11. [44] Kang W, Zeng L, Ling S W, et al. 3D Printed Supercapacitors toward Trinity Excellence in Kinetics, Energy Density, and Flexibility[J]. Advanced Energy Materials. 11 (2021) 2100020. [45] Li E Y, Liu R, Huang S, et al. Flexible N-doped Active Carbon/Bacterial Cellulose Paper for Supercapacitor Electrode with High Areal Performance[J]. Synthetic. Metals. 226 (2017) 104-112. [46] Tagliaferri S, Nagaraju G, Panagiotopoulos A, et al. Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance[J]. ACS Nano. 15 (2021) 15342-15353. [47] Cui X L, Wang S X, Mao L P, et al. Optimizing Transition Metal Ion Ratio of LiNi0.5+xCo0.2+yMn0.3+zO2 (x+y+z=0) by Simplex and Normalization Combined Method[J]. Electrochimica Acta, 337 (2020) 135709. [48] Fu X L, Zhou X A, Zhao D N, et al. Study on Electrochemical Performance of Al-substitution for Different Cations in Li-rich Mn-based Materials[J]. Electrochimica Acta. 394 (2021)139136. [49] Kazari H, Pajootan E, Hubert P, et al. Dry Synthesis of Binder-Free Ruthenium Nitride-Coated Carbon Nanotubes as a Flexible Supercapacitor Electrode[J]. ACS Applied Materials & Interfaces. 14 (2022) 15112-15121. [50] Yuan Y J, Jiang L, Li X, et al. Ultrafast Shaped Laser Induced Synthesis of MXene Quantum Dots/Graphene for Transparent Supercapacitors[J]. Advanced Materials. 34 (2022) 2110013. -