王梦雅, 李世友, 高灿坤, 樊晓琦, 权银, 李小华, 李春雷, 张宁霜. 以MoS2修饰的3D打印还原石墨烯气凝胶制备微型超级电容器电极[J]. 新型炭材料, 2024, 39(2): 283-296. DOI: 10.1016/S1872-5805(24)60823-1
引用本文: 王梦雅, 李世友, 高灿坤, 樊晓琦, 权银, 李小华, 李春雷, 张宁霜. 以MoS2修饰的3D打印还原石墨烯气凝胶制备微型超级电容器电极[J]. 新型炭材料, 2024, 39(2): 283-296. DOI: 10.1016/S1872-5805(24)60823-1
WANG Meng-ya, LI Shi-you, GAO Can-kun, FAN Xiao-qi, QUAN Yin, LI Xiao-hua, LI Chun-lei, ZHANG Ning-shuang. The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing[J]. New Carbon Mater., 2024, 39(2): 283-296. DOI: 10.1016/S1872-5805(24)60823-1
Citation: WANG Meng-ya, LI Shi-you, GAO Can-kun, FAN Xiao-qi, QUAN Yin, LI Xiao-hua, LI Chun-lei, ZHANG Ning-shuang. The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing[J]. New Carbon Mater., 2024, 39(2): 283-296. DOI: 10.1016/S1872-5805(24)60823-1

以MoS2修饰的3D打印还原石墨烯气凝胶制备微型超级电容器电极

The production of electrodes for microsupercapacitors based on MoS2-modified reduced graphene oxide aerogels by 3D printing

  • 摘要: 微型超级电容器(MSCs)具有高的功率密度和卓越的循环性能,广泛的潜在应用,因而受到诸多关注。然而,制备具有高表面电容和能量密度的MSCs电极仍然存在挑战。本研究使用还原石墨烯气凝胶(GA)和二硫化钼(MoS2)作为材料,结合3D打印和表面修饰方法成功构建了具有超高表面电容和能量密度的MSCs电极。通过3D打印技术,获得具有稳定宏观结构和GA交联微孔结构的电极。此外,采用溶液法在3D打印电极表面加载MoS2纳米片,进一步提高了材料的电化学性能。具体而言,电极的表面电容达3.99 F cm−2,功率密度为194 µW cm−2,能量密度为1997 mWh cm−2,表现出卓越的电化学性能和循环稳定性。这项研究为制备具有高表面电容和高能量密度的微型超级电容器电极提供了一种简单高效的方法,在MSCs电极领域具有重要的参考意义。

     

    Abstract: Micro-supercapacitors (MSCs) are of interest because of their high power density and excellent cycling performance, offering a broad array of potential applications. However, preparing electrodes for the MSCs with an extremely high areal capacitance and energy density remains a challenge. We constructed MSC electrodes with an ultra-high area capacitance and a high energy density, using reduced graphene oxide aerogel (GA) and MoS2 as the active materials, combined with 3D printing and surface modification. Using 3D printing, we obtained electrodes with a stable macrostructure and a GA-crosslinked micropore structure. We also used a solution method to load the surface of the printed electrode with molybdenum disulfide nanosheets, further improving the electrochemical performance. The surface capacitance of the electrode reached 3.99 F cm2, the power density was 194 W cm2, and the energy density was 1997 mWh cm2, confirming its excellent electrochemical performance and cycling stability. This work provides a simple and efficient method for preparing MSC electrodes with a high areal capacitance and energy density, making them ideal for portable electronic devices.

     

/

返回文章
返回