留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improving the mechanical properties and thermal conductivity of mesophase-pitch-based carbon fibers by controlling the temperature in industrial spinning equipment

YE Gao-ming SHI Kui WU Huang HUANG Dong YE Chong OUYANG Ting ZHU Shi-peng FAN Zhen LIU Hong-bo LIU Jin-shui

叶高明, 石奎, 吴晃, 黄东, 叶崇, 欧阳婷, 朱世鹏, 樊桢, 刘洪波, 刘金水. 基于工程化设备通过调控纺丝温度提高中间相沥青炭纤维力学和导热性能. 新型炭材料(中英文), 2024, 39(2): 334-344. doi: 10.1016/S1872-5805(24)60826-7
引用本文: 叶高明, 石奎, 吴晃, 黄东, 叶崇, 欧阳婷, 朱世鹏, 樊桢, 刘洪波, 刘金水. 基于工程化设备通过调控纺丝温度提高中间相沥青炭纤维力学和导热性能. 新型炭材料(中英文), 2024, 39(2): 334-344. doi: 10.1016/S1872-5805(24)60826-7
YE Gao-ming, SHI Kui, WU Huang, HUANG Dong, YE Chong, OUYANG Ting, ZHU Shi-peng, FAN Zhen, LIU Hong-bo, LIU Jin-shui. Improving the mechanical properties and thermal conductivity of mesophase-pitch-based carbon fibers by controlling the temperature in industrial spinning equipment. New Carbon Mater., 2024, 39(2): 334-344. doi: 10.1016/S1872-5805(24)60826-7
Citation: YE Gao-ming, SHI Kui, WU Huang, HUANG Dong, YE Chong, OUYANG Ting, ZHU Shi-peng, FAN Zhen, LIU Hong-bo, LIU Jin-shui. Improving the mechanical properties and thermal conductivity of mesophase-pitch-based carbon fibers by controlling the temperature in industrial spinning equipment. New Carbon Mater., 2024, 39(2): 334-344. doi: 10.1016/S1872-5805(24)60826-7

基于工程化设备通过调控纺丝温度提高中间相沥青炭纤维力学和导热性能

doi: 10.1016/S1872-5805(24)60826-7
基金项目: 国家自然科学基金 (52202037、52002104、U21B2067) ;湖南创新型省份建设专项 (2021GK1140);湖南省科技人才托举工程(2022-TJ-N11);长沙市科技计划项目(kq2102005)
详细信息
    通讯作者:

    叶 崇,博士,研究员,E-mail:yec@hnu.edu.cn

    朱世鹏,博士,研究员,E-mail:carbonfiber703@163.com

    刘金水,博士,教授,E-mail:Jsliu@hnu.edu.cn

  • 中图分类号: TB33

Improving the mechanical properties and thermal conductivity of mesophase-pitch-based carbon fibers by controlling the temperature in industrial spinning equipment

More Information
    Author Bio:

    叶高明和石奎为共同第一作者

    Corresponding author: YE Chong, PH.D, Professor. E-mail: yec@hnu.edu.cnZHU Shi-peng, Ph.D, Professor.E-mail: carbonfiber703@163.comLIU Jin-shui, Ph.D, Professor. E-mail: Jsliu@hnu.edu.cn
  • #These authors contributed equally to this work.
  • 摘要: 基于工程化设备,在恒定挤出量条件下,通过调控纺丝温度制备了中间相沥青炭纤维( MPCFs ),探究纺丝温度对MPCFs微观结构、力学和导热性能的影响。结果表明:随着纺丝温度由309升高至320 °C,MPCFs的微观结构由石墨片层细小的褶皱劈裂辐射状结构逐步向石墨片层粗大的劈裂辐射状结构转变,拉伸强度由2.16增大到3.23 GPa,热导率由704升高到1078 W·m−1·K−1。这主要是因为纺丝温度越高,沥青熔体黏度越小,喷丝口处挤出胀大效应越弱,沥青熔体在喷丝孔流道内形成的微晶取向得以保持,以此制备的炭纤维具有更大的晶体尺寸和更高的微晶取向。
    #These authors contributed equally to this work.
  • FIG. 3068.  FIG. 3068.

    FIG. 3068..  FIG. 3068.

    Figure  1.  Schematic diagrams of (a) the spinning equipment and (b) the spinneret

    Figure  2.  Rheological properties of mesophase pitch: (a) viscosity-temperature curve, (b) variation curves of storage modulus (G'), loss modulus (G''), and loss coefficient (tanδ) with temperature, (c) thermal decomposition behavior and (d) polarized microscope images

    Figure  3.  XRD patterns of samples with (a) the equatorial scan of MPFs, (b) the meridian scan of MPFs, (c) the azimuthal scan on (002) crystal face of MPFs, (d) the equatorial scan of MPCFs, (e) the meridional scan of MPCFs and (f) the azimuthal scan on the (002) crystal face of MPCFs

    Figure  4.  Raman spectra of samples

    Figure  5.  SEM images of the cross section of fibers: (a) MPCF-309, (b) MPCF-310, (c) MPCF-311, (d) MPCF-313, (e) MPCF-314, (f) MPCF-316, (g) MPCF-318 and (h) MPCF- 321

    Figure  6.  Relationship of thermal conductivity and tensile strength to spinning temperature

    Figure  7.  Microstructural formation mechanism of MPCFs at different spinning temperatures: (a) low spinning temperature, (b) medium spinning temperature and (c) high spinning temperature

    Table  1.   The basic properties of mesophase pitch

    SP/°CTI/%QI/%Ash content/0.1×10−6Coking value/%H/CAC/%
    286.475.852.619.190.70.54100
    Note: SP, softening point. TI, toluene insoluble. QI, quinoline insoluble. H/C, mole ratio of hydrogen to carbon atoms. AC, anisotropic content.
    下载: 导出CSV

    Table  2.   Crystalline parameters of MPFs and MPCFs

    Samplesd002/nmLc/nmLa/nmZ/(°)
    MPF-3090.34332.220.5040.64
    MPF-3100.34312.250.4839.01
    MPF-3110.34282.320.5234.85
    MPF-312.50.34272.501.6435.81
    MPF-3140.34262.491.8431.56
    MPF-3160.34242.541.8930.18
    MPF-3180.34242.591.8829.56
    MPF-320.50.34232.661.9228.71
    MPCF-3090.340610.7617.0714.42
    MPCF-3100.340910.8922.8414.23
    MPCF-3110.340410.9822.9712.58
    MPCF-312.50.338110.9923.8711.57
    MPCF-3140.339311.4726.1711.02
    MPCF-3160.340611.5327.1410.41
    MPCF-3180.339912.0827.509.94
    MPCF-320.50.336613.7827.738.48
    下载: 导出CSV

    Table  3.   Microstructure, tensile strength and thermal conductivity of fibers prepared in other studies

    SamplesMicrostructureTensile strength/GPaThermal conductivity/(W·m−1·K−1)References
    Ribbon 3000 °CRibbon2.53~1150[26]
    CM-260Ribbon/837[27]
    SGFRound1.07 ± 0.30/[8]
    Modified Fiber CBRound/500[11]
    MPCF-3Round2.121322[28]
    XN-90Round3.43500[29-30]
    K13C2URound3.80620[31]
    K13D2URound3.70800[32]
    P120Split2.41640[29- 33]
    K1100Split3.101100[33, 34]
    MPCF-320.5Split3.231077This work
    下载: 导出CSV
  • [1] Snead L L, Balden M, Causey RA, et al. High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application[J]. Journal of Nuclear Materials,2002,307(2):1200-1204.
    [2] Wang M, Kang Q, Ning P. Thermal conductivity enhancement of carbon fiber composites[J]. Applied Thermal Engineering,2009,29(2-3):418-421. doi: 10.1016/j.applthermaleng.2008.03.004
    [3] Li T, Xu Z, Hu Z, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system[J]. Carbon,2010,48(3):924-925. doi: 10.1016/j.carbon.2009.10.043
    [4] Yuan G, Li X, Dong Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon,2014,68(3):413-425.
    [5] Manocha LM, Warrier A, Manocha S, et al. Thermophysical properties of densified pitch based carbon/carbon materials—I. Unidirectional composites[J]. Carbon,2006,44(3):480-487. doi: 10.1016/j.carbon.2005.08.012
    [6] Qin X, Lu Y, Xiao H, et al. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers[J]. Carbon,2012,50(12):4459-4469. doi: 10.1016/j.carbon.2012.05.024
    [7] Bermudez V, Ogale A A. Adverse effect of mesophase pitch draw-down ratio on carbon fiber strength[J]. Carbon,2020,168:328-336. doi: 10.1016/j.carbon.2020.06.062
    [8] Sieira P, Mendes P R D S, Castro A D, et al. Impact of spinning conditions on the diameter and tensile properties of mesophase petroleum pitch carbon fibers using design of experiments[J]. Materials Letters,2021,285:129110. doi: 10.1016/j.matlet.2020.129110
    [9] Wu H, Huang D, Ye C, et al. Engineering microstructure toward split-free mesophase pitch-based carbon fibers[J]. Journal of Materials Science,2022,57(4):2411-2423. doi: 10.1007/s10853-021-06770-9
    [10] Xu H, Guo J, Li W, et al. The effect of the molecular structure of naphthalene-based mesophase pitch on the properties of carbon fibers derived from it[J]. New Carbon Materials,2023,38(2):369-375. doi: 10.1016/S1872-5805(23)60709-7
    [11] Guo J, Li Z, Li B, et al. Hydrogenation of coal tar pitch for improved mesophase pitch molecular orientation and carbon fiber processing[J]. Journal of Analytical and Applied Pyrolysis,2023,174:106146. doi: 10.1016/j.jaap.2023.106146
    [12] Cao Y, Zang C, Zhang J, et al. High thermal-conductivity mesophase pitch-based graphite fiber with circular cross-section through a spinneret with a Y-shaped spinning hole[J]. Carbon Trends,2023,10:100244. doi: 10.1016/j.cartre.2022.100244
    [13] Yamada Y, Sasaki H. Inventors, laid-open Japanese patent application[P]. JP patent, 59-53717, 1984.
    [14] White JL, Buechler M. Mesophase mechanisms in the formation of graphitic microstructures[J]. Abstracts of Papers of the American Chemical Society,1984,187(4):25.
    [15] Mochida I, Yoon S H, Takano N, et al. Microstructure of mesophase pitch-based carbon fiber and its control[J]. Carbon,1996,34(8):941-956. doi: 10.1016/0008-6223(95)00172-7
    [16] Mochida I, Yoon S H, Korai Y. Control of transversal texture in circular mesophase pitch-based carbon fibre using non-circular spinning nozzles[J]. Journal of Materials Science,1993,28(9):2331-2336. doi: 10.1007/BF01151662
    [17] Yoon S H, Takano N, Korai Y, et al. Crack formation in mesophase pitch-basedcarbon fibres: Part I Some influential factors for crack formation[J]. Journal of Materials Science,1997,32(10):2753-2758. doi: 10.1023/A:1018699711846
    [18] Cho T, Lee Y S, Rao R, et al. Structure of carbon fiber obtained from nanotube-reinforced mesophase pitch[J]. Carbon,2003,41(7):1419-1424. doi: 10.1016/S0008-6223(03)00086-1
    [19] Liu Z, Ouyang T, Yang X, et al. Effect of spinning temperature on the structure and properties of mesophase pitch carbon fibers[J]. Carbon,2012(2):18-23.
    [20] Yao X, Ouyang T, Fei Y, et al. Investigation of effect of spinning conditions on diameter of mesophase pitch-based carbon fiber by taguchi experimental design[J]. New Chemical Materials,2016,44(5):136-138,141.
    [21] Ogale A A, Lin C, Anderson D P, et al. Orientation and dimensional changes in mesophase pitch-based carbon fibers[J]. Carbon,2002,40(8):1309-1319. doi: 10.1016/S0008-6223(01)00300-1
    [22] Sauder C, Lamon J, Pailler R. The tensile behavior of carbon fibers at high temperatures up to 2400 °C[J]. Carbon,2004,42(4):715-725. doi: 10.1016/j.carbon.2003.11.020
    [23] Zhang X, Fujiwara S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics,2000,21(4):965-980. doi: 10.1023/A:1006674510648
    [24] Qiang Z, Min Z, Mao P, et al. Rheological study of microstructures and properties for polymeric materials[J]. Frontiers of Materials Science in China,2007,1(1):1-6. doi: 10.1007/s11706-007-0001-5
    [25] Gahleitner M. Melt rheology of polyolefins[J]. Progress in Polymer Science,2001,26(6):895-944. doi: 10.1016/S0079-6700(01)00011-9
    [26] Yuan G, Li X, Dong Z, et al. The structure and properties of ribbon-shaped carbon fibers with high orientation[J]. Carbon,2014,68(2):426-439.
    [27] Ma Z, Shi J, Song Y, et al. Carbon with high thermal conductivity, prepared from ribbon-shaped mesosphase pitch-based fibers[J]. Carbon,2006,44(7):1298-1301. doi: 10.1016/j.carbon.2006.01.015
    [28] Zhang X, Ning S, Ma Z, et al. The structural properties of chemically derived graphene nanosheets/mesophase pitch-based composite carbon fibers with high conductivities[J]. Carbon,2020,156:499-505. doi: 10.1016/j.carbon.2019.09.085
    [29] Emmerich, Francisco G. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers[J]. Carbon,2014,79:274-293. doi: 10.1016/j.carbon.2014.07.068
    [30] Liang J, Gu Y, Bai M, et al. Electromagnetic shielding property of carbon fiber felt made of different types of short-chopped carbon fibers[J]. Composites Part A: Applied Science and Manufacturing,2019,121:289-298. doi: 10.1016/j.compositesa.2019.03.037
    [31] Whatley B L. Thermal management material, devices and methods therefor[P]. U. S. Patent, 2005-1-18, 6844054.
    [32] Rauch M P. Thermal characterization and optimization of the pixel module support structure for the phase-1 upgrade of the cms pixel detector[D]. Aachen, Tech. Hochsch, 2015.
    [33] Minus M, Kumar S. The processing, properties, and structure of carbon fibers[J]. JOM,2005,57(2):52-58. doi: 10.1007/s11837-005-0217-8
    [34] Blanco C, Appleyard S P, Rand B. Study of carbon fibres and carbon–carbon composites by scanning thermal microscopy[J]. Journal of Microscopy,2002,205(1):21-32. doi: 10.1046/j.0022-2720.2001.00974.x
    [35] Kundu S, Ogale A A. Rheostructural studies of a discotic mesophase pitch at processing flow conditions[J]. Rheol Acta,2010,49(8):845-854. doi: 10.1007/s00397-010-0448-7
    [36] Zhao J, Ouyang T, Yao X, et al. Die swell behavior of liquid crystalline mesophase pitch[J]. Journal of Materials Science,2016,51(15):7361-7369. doi: 10.1007/s10853-016-0025-2
    [37] Huang D, White J L. Experimental and theoretical investigation of extrudate swell of polymer melts from small (length)/(cross-section) ratio slit and capillary dies[J]. Polymer Engineering & Science,1980,20(3):182-189.
    [38] Liang J Z. Effects of extrusion conditions on die-swell behavior of polypropylene/diatomite composite melts[J]. Polymer Testing,2008,27(8):936-940. doi: 10.1016/j.polymertesting.2008.08.001
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  287
  • HTML全文浏览量:  124
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-21
  • 录用日期:  2023-11-20
  • 修回日期:  2023-11-03
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2024-04-20

目录

    /

    返回文章
    返回