陈曦, 李明轩, 闫金伦, 张龙力. MOF衍生碳基材料的电催化应用及其先进表征技术[J]. 新型炭材料, 2024, 39(1): 78-99. DOI: 10.1016/S1872-5805(24)60828-0
引用本文: 陈曦, 李明轩, 闫金伦, 张龙力. MOF衍生碳基材料的电催化应用及其先进表征技术[J]. 新型炭材料, 2024, 39(1): 78-99. DOI: 10.1016/S1872-5805(24)60828-0
CHEN Xi, LI Ming-xuan, Yan Jin-lun, Zhang Long-li. MOF-derived nanocarbon materials for electrochemical catalysis and their advanced characterization[J]. New Carbon Mater., 2024, 39(1): 78-99. DOI: 10.1016/S1872-5805(24)60828-0
Citation: CHEN Xi, LI Ming-xuan, Yan Jin-lun, Zhang Long-li. MOF-derived nanocarbon materials for electrochemical catalysis and their advanced characterization[J]. New Carbon Mater., 2024, 39(1): 78-99. DOI: 10.1016/S1872-5805(24)60828-0

MOF衍生碳基材料的电催化应用及其先进表征技术

MOF-derived nanocarbon materials for electrochemical catalysis and their advanced characterization

  • 摘要: 鉴于对清洁和可持续能源的需求,来自金属有机框架(MOFs)的纳米炭衍生物正崭露头角,成为电催化能量转化的独特催化剂。这些MOF衍生的纳米炭材料不仅保持了MOFs组成可定制和结构多样性等优势,而且在热解过程中可有效防止金属纳米颗粒和金属氧化物的聚集。因此,它们提高了电催化效率,改善了电导率,并在燃料电池和金属-空气电池等绿色能源技术中发挥了关键作用。该综述以MOF衍生碳基材料的炭化机制为起点,随后深入探讨了固有炭缺陷、金属和非金属原子掺杂,并研究了这些材料的合成策略。此外,全面介绍了先进的表征技术,包括原位映射和原位光谱学。最后,对MOF衍生碳基材料作为电催化剂的研究前景提供了见解。该综述的主要目标是为当前MOF衍生碳基电催化剂的状况提供更清晰的视角,鼓励更高效电催化材料的发展。

     

    Abstract: Because of the demand for clean and sustainable energy sources, nanocarbons, modified carbons and their composite materials derived from metal-organic frameworks (MOFs) are emerging as distinct catalysts for electrocatalytic energy conversion. These materials not only inherit the advantages of MOFs, like customizable dopants and structural diversity, but also effectively prevent the aggregation of nanoparticles of metals and metal oxides during pyrolysis. Consequently, they increase the electrocatalytic efficiency, improve electrical conductivity, and may play a pivotal role in green energy technologies such as fuel cells and metal-air batteries. This review first explores the carbonization mechanism of the MOF-derived carbon-based materials, and then considers 3 key aspects: intrinsic carbon defects, metal and non-metal atom doping, and the synthesis strategies for these materials. We also provide a comprehensive introduction to advanced characterization techniques to better understand the basic electrochemical catalysis processes, including mapping techniques for detecting localized active sites on electrocatalyst surfaces at the micro- to nano-scale and in-situ spectroscopy. Finally, we offer insights into future research concerning their use as electrocatalysts. Our primary objective is to provide a clearer perspective on the current status of MOF-derived carbon-based electrocatalysts and encourage the development of more efficient materials.

     

/

返回文章
返回