留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions

WANG Zhi-dong XIA Tian LI Zhen-hua SHAO Ming-fei

王治栋, 夏天, 栗振华, 邵明飞. 炭材料在电解水制氢耦合有机氧化方面的研究进展. 新型炭材料(中英文), 2024, 39(1): 64-77. doi: 10.1016/S1872-5805(24)60829-2
引用本文: 王治栋, 夏天, 栗振华, 邵明飞. 炭材料在电解水制氢耦合有机氧化方面的研究进展. 新型炭材料(中英文), 2024, 39(1): 64-77. doi: 10.1016/S1872-5805(24)60829-2
WANG Zhi-dong, XIA Tian, LI Zhen-hua, SHAO Ming-fei. A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions. New Carbon Mater., 2024, 39(1): 64-77. doi: 10.1016/S1872-5805(24)60829-2
Citation: WANG Zhi-dong, XIA Tian, LI Zhen-hua, SHAO Ming-fei. A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions. New Carbon Mater., 2024, 39(1): 64-77. doi: 10.1016/S1872-5805(24)60829-2

炭材料在电解水制氢耦合有机氧化方面的研究进展

doi: 10.1016/S1872-5805(24)60829-2
基金项目: 国家重点科技攻关计划(2022YFB4002700);国家自然科学基金(22108008,22090031,21991102,22288102);中国科学院青年杰出科学家资助计划(2021QNRC001);中央高校基础科学基金(BUCTRC202011)
详细信息
    通讯作者:

    栗振华,副教授. E-mail:LZH0307@mail.buct.edu.cn

    邵明飞,教授. E-mail:shaomf@mail.buct.edu.cn

  • 中图分类号: 127.1+1

A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions

More Information
  • 摘要: 利用可再生能源(太阳能、风能)发电进行电解水制氢是获取“绿氢”的必经之路。然而,目前电解水制氢仍面临电解效率低和能耗高的巨大挑战。通过将电解水体系与热力学上更有利的有机氧化反应耦合是解决上述问题的重要途径,在有效提升阴极产氢效率的同时还可以在阳极获得高附加值化学品(用于进一步分摊并降低制氢成本)。这一新兴领域的发展关键在于制备具有高选择性和高稳定性的催化材料。碳基材料具有来源丰富、比表面积高、孔隙率高等优点,在高性能有机电氧化和电解水析氢催化剂方面引起了科研人员的广泛关注。本研究总结了碳基材料在电解水制氢耦合有机氧化方面的最新研究进展,并讨论了该材料在这一新兴电催化领域的发展前景和面临挑战,以推进新型炭材料的发展。
  • FIG. 2912.  FIG. 2912.

    FIG. 2912..  FIG. 2912.

    Figure  1.  (a) Diagrammatic representation of electrolytic H2 production. (b) Scheme forelectrolytic H2 production coupled with organic electrooxidation and (c) Comparison of the HER, ethanol electrooxidation reaction (EOR) and OER

    Figure  2.  (a) Scheme for the outer and inner sphere reactions and (b) reaction mechanism for the oxidation of ethanol to the acetate ion on the surface of a gold film working electrode (WE) in an alkaline solution. Used with authorization from Ref [39]. Copyright by 2019 American Chemical Society

    Figure  3.  (a) Scheme for TEMPO-mediated HMF electrooxidation. (b) Formation of 4-ethylnonane, a valuable liquid fuel, from the electrooxidation of 2-methylfuran (2-MF). Reproduced with permission from Ref [48]. Copyright from 2019 American Chemical Society

    Figure  4.  (a) Proposed reaction pathways for glycerol electrooxidation (GOR). (b) Scanning electron microscopy (SEM) images of the Ni-Mo-N. (c) Diagrammatic representation of the concurrent electrolytic H2 and formate production from glycerol aqueous solution and (d) LSV curves of Ni-Mo-N/CFC in 1.0 mol L−1 KOH with or without 0.1 mol L−1 glycerol. Reproduced with permission from Ref [64]

    Figure  5.  (a) Two possible HMF oxidation pathways. (b) Diagram depicting the synthesis of the Ni3N@C electrocatalyst. (c) SEM image of Ni3N@C. (d) LSV curves of Ni3N@C in 1.0 mol L−1 KOH with or without 10 mmol L−1 HMF and (e) FDCA yield (%) in 6 successive electrolysis cycles with Ni3N@C. Reproduced with permission from Ref [72]. Copyright from 2019 Angewandte Chemie International Edition

    Figure  6.  (a) Diagrammatic representation of the synthesis of NPS-PC for bi-functional ORR and HER. (b) SEM image of NPS-PC and LSV curves in (c) 0.5 mol L−1 H2SO4 and (d) 1 mol L−1 KOH. Reproduced with permission from Ref [76]. Copyright from 2020 Elsevier

    Figure  7.  (a) Ni-zeolitic imidazolate framework/N-doped porous carbon (Ni-ZIF/NC) electrocatalyst for HER. (b) SEM image of Ni-ZIF/NC. (c) Raman spectra of different catalysts and (d) Defect design in M–ZIF/NC to enhance HER. Reproduced with permission from Ref [87]. Copyright from 2021 Elsevier

    Table  1.   Summary of reported electrocatalysts containing carbon substrates for organic oxidation reactions

    SampleReactantElectrolyteη (vs. RHE)/V for J = 10 mA cm−2FE/%Stability/hRef.
    Pt-Co3O4/CPMethanol1.0 M NaOH + 3.5% NaCl + 2 M methanol0.56>8020[53]
    Co3O4/CPEthanol2 M KOH + 2 M ethanol1.4598[58]
    Ni-Mo-N/CFCGlycerol1 M KOH + 0.1 M glycerol1.36~10010[64]
    MnO2/CPGlycerol0.005 M H2SO4 + 0.2 M glycerol1.36~60850[65]
    NC@CuCo2Nx/CFBenzyl alcohol1 M KOH + 15 mM benzyl alcohol1.559560[66]
    Ni3N@CHMF1.0 M KOH + 10 mM HMF1.55~100[72]
    Note: M—mol L−1, CP—carbon papers, NC—N-doped carbon, CF—carbon fibric
    下载: 导出CSV

    Table  2.   Summary of carbon-based HER catalysts

    SampleElectrolyteη (vs. RHE)/mV for J = 10 mA cm−2Tafel slopse/(mV dec−1)Stability/hRef.
    CNFs0.5 M H2SO4442[74]
    NPS-PC0.5 M H2SO4, 1 M KOH260, 25086, 11310[76]
    g-C3N4@NG0.5 M H2SO424052[77]
    g-C3N4@G MMs0.5 M H2SO4219[78]
    g-C3N4 QDs0.5 M H2SO4208521[79]
    N-doped Fru/Gu-HTC-10001 M KOH350108[80]
    Pt/NPC0.5 M H2SO422[82]
    FeCo@NCNTs0.1 M H2SO424072[83]
    FeS2@RGO0.5 M H2SO413966>10[84]
    Ni-ZIF/NC1 M KOH, 0.5 M H2SO4163, 17785, 84>50[87]
    D-TiO2/Co@NCT0.5 M H2SO41677410[90]
    Note: M—mol/L
    下载: 导出CSV
  • [1] Johnston B, Mayo M C, Khare A. Hydrogen: The energy source for the 21st century[J]. Technovation,2005,25(6):569-585. doi: 10.1016/j.technovation.2003.11.005
    [2] Dawood F, Anda M, Shafiullah G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy,2020,45(7):3847-3869. doi: 10.1016/j.ijhydene.2019.12.059
    [3] Hasan M M, Rakib R H, Hasnat M A, et al. Electroless deposition of silver dendrite nanostructure onto glassy carbon electrode and its electrocatalytic activity for ascorbic acid oxidation[J]. ACS Applied Energy Materials,2020,3(3):2907-2915. doi: 10.1021/acsaem.9b02513
    [4] Sánchez-Bastardo N, Schlögl R, Ruland H. Methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy[J]. Industrial & Engineering Chemistry Research,2021,60(32):11855-11881.
    [5] Popczun E J, McKone J R, Read C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2013,135(25):9267-9270. doi: 10.1021/ja403440e
    [6] Tarhan C, Çil M A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods[J]. Journal of Energy Storage,2021,40:102676. doi: 10.1016/j.est.2021.102676
    [7] Hosseini S E, Wahid M A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy[J]. International Journal of Energy Research,2020,44(6):4110-4131. doi: 10.1002/er.4930
    [8] Wang Y, Yan D, El Hankari S, et al. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting[J]. Advanced Science,2018,5(8):1800064. doi: 10.1002/advs.201800064
    [9] Zeng L, Zhao Z, Lv F, et al. Anti-dissolution Pt single site with Pt (OH)(O3)/Co (P) coordination for efficient alkaline water splitting electrolyzer[J]. nature communications,2022,13(1):3822. doi: 10.1038/s41467-022-31406-0
    [10] Earar K, Arbune M, Dorobat C M, et al. Biochemical effects and therapeutic application of vitamin C (C6H8O6) on COVID-19 infection[J]. Revista de Chimie,2020,71(5):473-478. doi: 10.37358/RC.20.5.8159
    [11] Wu A, Xie Y, Ma H, et al. Integrating the active OER and HER components as the heterostructures for the efficient overall water splitting[J]. Nano Energy,2018,44:353-363. doi: 10.1016/j.nanoen.2017.11.045
    [12] Wang J, Kong H, Zhang J, et al. Carbon-based electrocatalysts for sustainable energy applications[J]. Progress in Materials Science,2021,116:100717. doi: 10.1016/j.pmatsci.2020.100717
    [13] Wang N, Cao Z, Zheng X, et al. Hydration-effect-promoting Ni-Fe oxyhydroxide catalysts for neutral water oxidation[J]. Advanced Materials,2020,32(8):1906806. doi: 10.1002/adma.201906806
    [14] Li P, Zhao R, Chen H, et al. Recent advances in the development of water oxidation electrocatalysts at mild pH[J]. Small,2019,15(13):1805103. doi: 10.1002/smll.201805103
    [15] Li Y, Wei X, Chen L, et al. Electrocatalytic hydrogen production trilogy[J]. Angewandte Chemie International Edition,2021,60(36):19550-19571. doi: 10.1002/anie.202009854
    [16] You B, Liu X, Jiang N, et al. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. Journal of the American Chemical society,2016,138(41):13639-13646. doi: 10.1021/jacs.6b07127
    [17] Chen Z J, Dong J, Wu J, et al. Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density[J]. Nature Communications,2023,14(1):4210. doi: 10.1038/s41467-023-39848-w
    [18] You B, Sun Y. Innovative strategies for electrocatalytic water splitting[J]. Accounts of chemical research,2018,51(7):1571-1580. doi: 10.1021/acs.accounts.8b00002
    [19] Xu Y, Zhang B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions[J]. ChemElectroChem,2019,6(13):3214-3226. doi: 10.1002/celc.201900675
    [20] Kakati N, Maiti J, Lee S H, et al. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt–Ru?[J]. Chemical reviews,2014,114(24):12397-12429. doi: 10.1021/cr400389f
    [21] Cheung K C, Wong W L, Ma D L, et al. Transition metal complexes as electrocatalysts-development and applications in electro-oxidation reactions[J]. Coordination Chemistry Reviews,2007,251(17-20):2367-2385. doi: 10.1016/j.ccr.2007.04.004
    [22] Trincado M, Banerjee D, Grützmacher H. Molecular catalysts for hydrogen production from alcohols[J]. Energy & Environmental Science,2014,7(8):2464-2503.
    [23] Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2015,3(29):14942-14962. doi: 10.1039/C5TA02974K
    [24] Yu X, Ye S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst[J]. Journal of power sources,2007,172(1):145-154. doi: 10.1016/j.jpowsour.2007.07.048
    [25] Serp P, Figueiredo J L. Carbon Materials for Catalysis[M]. Hoboken, the USA: John Wiley & Sons, Inc. , 2009.
    [26] Li W, Liu J, Zhao D. Mesoporous materials for energy conversion and storage devices[J]. Nature Reviews Materials,2016,1(6):1-17.
    [27] Liu X, Dai L. Carbon-based metal-free catalysts[J]. Nature Reviews Materials,2016,1(11):1-12.
    [28] Zhao S, Wang D W, Amal R, et al. Carbon‐based metal‐free catalysts for key reactions involved in energy conversion and storage[J]. Advanced Materials,2019,31(9):1801526. doi: 10.1002/adma.201801526
    [29] Li W, Yu C, Tan X, et al. Recent advances in the electroreduction of carbon dioxide to formic acid over carbon-based materials[J]. New Carbon Materials,2022,37(2):277-287. doi: 10.1016/S1872-5805(22)60592-4
    [30] Zhou W, Zhou Y, Yang L, et al. N-doped carbon-coated cobalt nanorod arrays supported on a titanium mesh as highly active electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2015,3(5):1915-1919. doi: 10.1039/C4TA06284A
    [31] Ito Y, Cong W, Fujita T, et al. High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction[J]. Angewandte Chemie International Edition,2015,54(7):2131-2136. doi: 10.1002/anie.201410050
    [32] Duan J, Chen S, Jaroniec M, et al. Porous C3N4 nanolayers@ N-graphene films as catalyst electrodes for highly efficient hydrogen evolution[J]. ACS Nano,2015,9(1):931-940. doi: 10.1021/nn506701x
    [33] Cui H, Zhou Z, Jia D. Heteroatom-doped graphene as electrocatalysts for air cathodes[J]. Materials Horizons,2017,4(1):7-19. doi: 10.1039/C6MH00358C
    [34] Lei Y, Jia M, Guo P, et al. MoP nanoparticles encapsulated in P-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction[J]. Catalysis Communications,2020,140:106000. doi: 10.1016/j.catcom.2020.106000
    [35] Yan G, Feng X, Khan S U, et al. Polyoxometalate and resin-derived P-doped Mo2C@N-doped carbon as a highly efficient hydrogen-evolution reaction catalyst at all pH values[J]. Chemistry-An Asian Journal,2018,13(2):158-163. doi: 10.1002/asia.201701400
    [36] Ma G, Ning G, Wei Q. S-doped carbon materials: Synthesis, properties and applications[J]. Carbon,2022,195:328-340. doi: 10.1016/j.carbon.2022.03.043
    [37] Taube H. Electron Transfer Reactions of Complex Ions in Solution[M]. Elsevier, 2012.
    [38] Bard A J. Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: The challenge[J]. Journal of the American Chemical Society,2010,132(22):7559-7567. doi: 10.1021/ja101578m
    [39] Zhang Y, Wang J G, Yu X, et al. Potential-dynamic surface chemistry controls the electrocatalytic processes of ethanol oxidation on gold surfaces[J]. ACS Energy Letters,2018,4(1):215-221.
    [40] Zhou H, Li Z, Ma L, et al. Electrocatalytic oxidative upgrading of biomass platform chemicals: From the aspect of reaction mechanism[J]. Chemical Communications,2022,58(7):897-907. doi: 10.1039/D1CC06254A
    [41] Horn E J, Rosen B R, Chen Y, et al. Scalable and sustainable electrochemical allylic C―H oxidation[J]. Nature,2016,533(7601):77-81. doi: 10.1038/nature17431
    [42] Wang D, Wang P, Wang S, et al. Direct electrochemical oxidation of alcohols with hydrogen evolution in continuous-flow reactor[J]. Nature communications,2019,10(1):2796. doi: 10.1038/s41467-019-10928-0
    [43] Cha H G, Choi K S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell[J]. Nature chemistry,2015,7(4):328-333. doi: 10.1038/nchem.2194
    [44] Jiang N, You B, Boonstra R, et al. Integrating electrocatalytic 5-hydroxymethylfurfural oxidation and hydrogen production via Co ―P-derived electrocatalysts[J]. ACS Energy Letters,2016,1(2):386-390. doi: 10.1021/acsenergylett.6b00214
    [45] Deng X, Kang X, Li M, et al. Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@NiCo-LDH core–shell nanoarray electrocatalysts[J]. Journal of Materials Chemistry A,2020,8(3):1138-1146. doi: 10.1039/C9TA06917H
    [46] Gao L, Liu Z, Ma J, et al. NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid[J]. Applied Catalysis B: Environmental,2020,261:118235. doi: 10.1016/j.apcatb.2019.118235
    [47] Zhou Z, Chen C, Gao M, et al. In situ anchoring of a Co3O4 nanowire on nickel foam: An outstanding bifunctional catalyst for energy-saving simultaneous reactions[J]. Green Chemistry,2019,21(24):6699-6706. doi: 10.1039/C9GC02880C
    [48] Chen R, Yang C, Zhou Z, et al. Electrochemically triggered chain reactions for the conversion of furan derivatives[J]. Angewandte Chemie International Edition,2021,60(14):7534-7539. doi: 10.1002/anie.202016601
    [49] Badalyan A, Stahl S S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators[J]. Nature,2016,535(7612):406-410. doi: 10.1038/nature18008
    [50] Ju H K, Giddey S, Badwal S P S. The role of nanosized SnO2 in Pt-based electrocatalysts for hydrogen production in methanol assisted water electrolysis[J]. Electrochimica Acta,2017,229:39-47. doi: 10.1016/j.electacta.2017.01.106
    [51] Liu X, Han Y, Guo Y, et al. Electrochemical hydrogen generation by oxygen evolution reaction alternative anodic oxidation reactions[J]. Advanced Energy and Sustainability Research,2022,3(7):2200005. doi: 10.1002/aesr.202200005
    [52] Xiang K, Wu D, Deng X, et al. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide @ hydroxysulfide nanosheets electrocatalysts[J]. Advanced Functional Materials,2020,30(10):1909610. doi: 10.1002/adfm.201909610
    [53] Xiang K, Song Z, Wu D, et al. Bifunctional Pt–Co3O4 electrocatalysts for simultaneous generation of hydrogen and formate via energy-saving alkaline seawater/methanol co-electrolysis[J]. Journal of Materials Chemistry A,2021,9(10):6316-6324. doi: 10.1039/D0TA10501E
    [54] Zhu B, Dong B, Wang F, et al. Unraveling a bifunctional mechanism for methanol-to-formate electro-oxidation on nickel-based hydroxides[J]. Nature Communications,2023,14(1):1686. doi: 10.1038/s41467-023-37441-9
    [55] Monyoncho E A, Woo T K, Baranova E A. Ethanol electrooxidation reaction in alkaline media for direct ethanol fuel cells[J]. 2018.
    [56] Pagliaro M V, Bellini M, Bevilacqua M, et al. Carbon supported Rh nanoparticles for the production of hydrogen and chemicals by the electroreforming of biomass-derived alcohols[J]. RSC advances,2017,7(23):13971-13978. doi: 10.1039/C7RA00044H
    [57] Caravaca A, Sapountzi F M, de Lucas-Consuegra A, et al. Electrochemical reforming of ethanol–water solutions for pure H2 production in a PEM electrolysis cell[J]. International Journal of Hydrogen Energy,2012,37(12):9504-9513. doi: 10.1016/j.ijhydene.2012.03.062
    [58] Dai L, Qin Q, Zhao X, et al. Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst[J]. ACS central science,2016,2(8):538-544. doi: 10.1021/acscentsci.6b00164
    [59] Bergmann A, Martinez-Moreno E, Teschner D, et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution[J]. Nature communications,2015,6(1):8625. doi: 10.1038/ncomms9625
    [60] Gao S, Lin Y, Jiao X, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature,2016,529(7584):68-71. doi: 10.1038/nature16455
    [61] Zhou Y, Shen Y, Xi J. Seed-mediated synthesis of PtxAuy@Ag electrocatalysts for the selective oxidation of glycerol[J]. Applied Catalysis B:Environmental,2019,245:604-612. doi: 10.1016/j.apcatb.2019.01.009
    [62] Frota Jr E F, de Barros V V S, de Araújo B R S, et al. Pt/C containing different platinum loadings for use as electrocatalysts in alkaline PBI-based direct glycerol fuel cells[J]. International Journal of Hydrogen Energy,2017,42(36):23095-23106. doi: 10.1016/j.ijhydene.2017.07.125
    [63] Simões M, Baranton S, Coutanceau C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration[J]. Applied Catalysis B:Environmental,2010,93(3-4):354-362. doi: 10.1016/j.apcatb.2009.10.008
    [64] Li Y, Wei X, Chen L, et al. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions[J]. Nature communications,2019,10(1):5335. doi: 10.1038/s41467-019-13375-z
    [65] Li Y, Wei X, Han S, et al. MnO2 electrocatalysts coordinating alcohol oxidation for ultra-durable hydrogen and chemical productions in acidic solutions[J]. Angewandte Chemie,2021,133(39):21634-21642. doi: 10.1002/ange.202107510
    [66] Zheng J, Chen X, Zhong X, et al. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol[J]. Advanced Functional Materials,2017,27(46):1704169. doi: 10.1002/adfm.201704169
    [67] Zeng L, Chen Y, Sun M, et al. Cooperative RhO5/Ni (Fe) Site for Efficient Biomass Upgrading Coupled with H2 Production[J]. Journal of the American Chemical Society, 2023, 145 (32): 17577-17587.
    [68] You B, Jiang N, Liu X, et al. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst[J]. Angewandte Chemie International Edition,2016,55(34):9913-9917. doi: 10.1002/anie.201603798
    [69] Gu K, Wang D, Xie C, et al. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation[J]. Angewandte Chemie,2021,133(37):20415-20420. doi: 10.1002/ange.202107390
    [70] Chadderdon D J, Xin L, Qi J, et al. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles[J]. Green Chemistry,2014,16(8):3778-3786. doi: 10.1039/C4GC00401A
    [71] Zhou C, Shi W, Wan X, et al. Oxidation of 5-hydroxymethylfurfural over a magnetic iron oxide decorated rGO supporting Pt nanocatalyst[J]. Catalysis Today,2019,330:92-100. doi: 10.1016/j.cattod.2018.05.037
    [72] Zhang N, Zou Y, Tao L, et al. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy[J]. Angewandte Chemie,2019,131(44):16042-16050. doi: 10.1002/ange.201908722
    [73] Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chemical reviews,2019,120(2):851-918.
    [74] Choi G B, Hong S, Wee J H, et al. Quantifying carbon edge sites on depressing hydrogen evolution reaction activity[J]. Nano Letters,2020,20(8):5885-5892. doi: 10.1021/acs.nanolett.0c01842
    [75] Liang Z, Hong Z, Xie M, et al. Recent progress of mesoporous carbons applied in electrochemical catalysis[J]. New Carbon Materials,2022,37(1):152-179. doi: 10.1016/S1872-5805(22)60575-4
    [76] Wang Y, Wang S, Li R, et al. A simple strategy for tridoped porous carbon nanosheet as superior electrocatalyst for bifunctional oxygen reduction and hydrogen evolution reactions[J]. Carbon,2020,162:586-594. doi: 10.1016/j.carbon.2020.03.011
    [77] Zheng Y, Jiao Y, Zhu Y, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature communications,2014,5(1):3783. doi: 10.1038/ncomms4783
    [78] Han Q, Cheng Z, Gao J, et al. Mesh-on-mesh graphitic-C3N4@graphene for highly efficient hydrogen evolution[J]. Advanced Functional Materials,2017,27(15):1606352. doi: 10.1002/adfm.201606352
    [79] Yang N, Chen Z, Zhao Z, et al. Electrochemical fabrication of ultrafine g-C3N4 quantum dots as a catalyst for the hydrogen evolution reaction[J]. New Carbon Materials,2022,37(2):392-399. doi: 10.1016/S1872-5805(21)60045-8
    [80] Huang B, Liu Y, Xie Z. Biomass derived 2D carbons via a hydrothermal carbonization method as efficient bifunctional ORR/HER electrocatalysts[J]. Journal of Materials Chemistry A,2017,5(45):23481-23488. doi: 10.1039/C7TA08052B
    [81] Hansen J N, Prats H, Toudahl K K, et al. Is there anything better than Pt for HER?[J]. ACS energy letters,2021,6(4):1175-1180. doi: 10.1021/acsenergylett.1c00246
    [82] Wang C, Hu F, Yang H, et al. 1. 82% Pt/N, P co-doped carbon overwhelms 20 wt. % Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction[J]. Nano Research,2017,10:238-246. doi: 10.1007/s12274-016-1281-9
    [83] Deng J, Ren P, Deng D, et al. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction[J]. Energy & Environmental Science,2014,7(6):1919-1923.
    [84] Chen Y, Xu S, Li Y, et al. FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high-performance electrocatalysts[J]. Advanced Energy Materials,2017,7(19):1700482. doi: 10.1002/aenm.201700482
    [85] Dai H, Yuan X, Jiang L, et al. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective[J]. Coordination Chemistry Reviews,2021,441:213985. doi: 10.1016/j.ccr.2021.213985
    [86] Wen X, Guan J. Recent progress on MOF-derived electrocatalysts for hydrogen evolution reaction[J]. Applied Materials Today,2019,16:146-168. doi: 10.1016/j.apmt.2019.05.013
    [87] Zhang Y, Yun S, Sun M, et al. Implanted metal-nitrogen active sites enhance the electrocatalytic activity of zeolitic imidazolate zinc framework-derived porous carbon for the hydrogen evolution reaction in acidic and alkaline media[J]. Journal of Colloid and Interface Science,2021,604:441-457. doi: 10.1016/j.jcis.2021.06.152
    [88] Lyu D, Du Y, Huang S, et al. Highly efficient multifunctional Co–N–C electrocatalysts with synergistic effects of Co–N moieties and Co metallic nanoparticles encapsulated in a N-doped carbon matrix for water-splitting and oxygen redox reactions[J]. ACS applied materials & interfaces,2019,11(43):39809-39819.
    [89] Zhang L, Liu W, Dou Y, et al. The role of transition metal and nitrogen in metal–N–C composites for hydrogen evolution reaction at universal pHs[J]. The Journal of Physical Chemistry C,2016,120(51):29047-29053. doi: 10.1021/acs.jpcc.6b11782
    [90] Yu J, Zhou W, Xiong T, et al. Enhanced electrocatalytic activity of Co@N-doped carbon nanotubes by ultrasmall defect-rich TiO2 nanoparticles for hydrogen evolution reaction[J]. Nano Research,2017,10:2599-2609. doi: 10.1007/s12274-017-1462-1
    [91] Li Z, Yan Y, Xu S M, et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst[J]. Nature Communications,2022,13(1):147. doi: 10.1038/s41467-021-27806-3
    [92] Luo L, Xu L, Wang Q, et al. Recent Advances in External Fields‐Enhanced Electrocatalysis[J]. Advanced Energy Materials,2023,13:2301276. doi: 10.1002/aenm.202301276
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  54
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-23
  • 录用日期:  2023-11-24
  • 修回日期:  2023-11-23
  • 网络出版日期:  2023-12-02
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回