留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon-based electrocatalysts for water splitting at high-current-densities: A review

CHEN Yu-xiang ZHAO Xiu-hui DONG Peng ZHANG Ying-jie ZOU Yu-qin WANG Shuang-yin

陈玉祥, 赵秀辉, 董鹏, 张英杰, 邹雨芹, 王双印. 面向大电流密度电解水的碳基催化剂研究进展. 新型炭材料(中英文), 2024, 39(1): 1-16. doi: 10.1016/S1872-5805(24)60831-0
引用本文: 陈玉祥, 赵秀辉, 董鹏, 张英杰, 邹雨芹, 王双印. 面向大电流密度电解水的碳基催化剂研究进展. 新型炭材料(中英文), 2024, 39(1): 1-16. doi: 10.1016/S1872-5805(24)60831-0
CHEN Yu-xiang, ZHAO Xiu-hui, DONG Peng, ZHANG Ying-jie, ZOU Yu-qin, WANG Shuang-yin. Carbon-based electrocatalysts for water splitting at high-current-densities: A review. New Carbon Mater., 2024, 39(1): 1-16. doi: 10.1016/S1872-5805(24)60831-0
Citation: CHEN Yu-xiang, ZHAO Xiu-hui, DONG Peng, ZHANG Ying-jie, ZOU Yu-qin, WANG Shuang-yin. Carbon-based electrocatalysts for water splitting at high-current-densities: A review. New Carbon Mater., 2024, 39(1): 1-16. doi: 10.1016/S1872-5805(24)60831-0

面向大电流密度电解水的碳基催化剂研究进展

doi: 10.1016/S1872-5805(24)60831-0
基金项目: 中国博士后基金项目(2020M672471)
详细信息
    通讯作者:

    陈玉祥,教授. E-mail:chenyux@kust.edu.cn

    邹雨芹,教授. E-mail:yuqin_zou@hnu.edu.cn

  • 中图分类号: O646

Carbon-based electrocatalysts for water splitting at high-current-densities: A review

Funds: This work was supported by China Postdoctoral Science Foundation (2020M672471)
More Information
  • 摘要: 电解水体系可以在温和条件下制备氢气。得益于高比表面积、高电子传输性和原料丰富等优点,碳基电催化剂备受关注。商业用电解水装置需要在较低过电位下实现较大交换电流,进而实现氢气的持续快速生产。然而当前实验室研究的重心大多放在小电流服役工况,对于大电流工况下的系列问题关注较少。研究表明,电解水体系在不同电流密度下表现出的问题差异较大,其影响因素包括气泡、电催化剂局域微环境和电极稳定性等。本综述,首先对碳基电解水催化剂的发展现状进行了总结,大电流模式下暴露出的问题与挑战进行了讨论,并提出可能有效的解决方法,以实现能满足大电流密度要求的高活性高稳定性碳基电催化剂的研发。
  • FIG. 2909.  FIG. 2909.

    FIG. 2909..  FIG. 2909.

    Figure  1.  Schematic diagram of the topics covered in this review

    Figure  2.  Typical water electrolysis cell

    Figure  3.  Computational simulation of specific N-doping and removing process in different carbon models[36]. (A) Schematic and formation energy calculation of transformation from edge-deficient carbon to GN-dominated and divacancy-rich carbon. (B) Schematic and formation energy calculation of transformation from edge-rich carbon to PDN-dominated carbon and then to pentagon-rich carbon. (C) Schematic and formation energy calculation of transformation from pentagon-edge-rich carbon to PON-dominated carbon and then to unique carbon reconstruction. Reproduced with permission

    Figure  4.  Digital images showing the bubble generation behavior difference on (a) flat MoS2 film and (b) nanostructured MoS2 film. Scale bar: 500 μm. The corresponding statistics of the size distribution of releasing bubbles are shown on the right. These data clearly evidence that the size of bubbles released from nanostructured electrodes is only 1/10 of that of a flat surface. By alleviating the bubble adhesion issue and reducing the “dead area,” the lower-adhesion “superhydrophobic” nanostructured MoS2 electrodes exhibit higher electrolysis efficiency[79]. Reproduced with permission

    Figure  5.  Schematic synthesis process, morphology, and structural characterizations of RuNi2©G-250 and RuNi2@G[88]. (a) Schematic illustration of the preparation process for RuNi2©G-250 with the interface between RuO2 and graphene, where the symbol “T” represents the different oxidation temperatures, and “X” represents the molar ratio of Ru and Ni precursors. (b) High resolution transmission electron microscope (HRTEM) image of RuNi2@G. (c) HRTEM image of RuNi2©G-250 with a unique interface between RuO2 and graphene. (d–g) High angle annular dark field scanning transmission electron microscope (HAADF-STEM) image and the corresponding energy-dispersive spectroscopy maps of RuNi2©G-250 for Ru, Ni and the combined image. Reproduced with permission

    Figure  6.  Schematic diagram of local acid-like microenvironment generation on HxWO3 cathode[96]. Reproduced with permission

    Figure  7.  Water electrolysis systems with various anode reactions[107]. (a) Comparison of various anode reactions for water electrolysis. (b) Electrochemistry-involved conversion path from biomass feedstock into value-added chemicals. Reproduced with permission

  • [1] Chen M, Kitiphatpiboon N, Feng C, et al. Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical Review[J]. eScience,2023,3(2):100111. doi: 10.1016/j.esci.2023.100111
    [2] Ye K, Chai Z, Gu J, et al. BiOI–BiVO4 photoanodes with significantly improved solar water splitting capability: p-n junction to expand solar adsorption range and facilitate charge carrier dynamics[J]. Nano Energy,2015,18:222-231. doi: 10.1016/j.nanoen.2015.10.018
    [3] Chia X, Pumera M J N C. Characteristics and performance of two-dimensional materials for electrocatalysis[J]. Nature Catalysis,2018,1(12):909-921. doi: 10.1038/s41929-018-0181-7
    [4] Kou T, Wang S, Li J L. Perspective on high-rate alkaline water splitting[J]. ACS Materials Letters,2021,3(2):224-234. doi: 10.1021/acsmaterialslett.0c00536
    [5] Ayers K J. High efficiency pem water electrolysis: Enabled by advanced catalysts, membranes, and processes[J]. Current Opinion in Chemical Engineering,2021,33:100719. doi: 10.1016/j.coche.2021.100719
    [6] Wang J, Gao Y, Kong H, et al. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances[J]. Chemical Society Reviews,2020,49(24):9154-9196. doi: 10.1039/D0CS00575D
    [7] Yang M, Li Y, Dong C L, et al. Correlating the valence state with the adsorption behavior of a Cu-based electrocatalyst for furfural oxidation with anodic hydrogen production reaction[J]. Advanced Materials,2023,35(39):2304203. doi: 10.1002/adma.202304203
    [8] Yu X, Yu Z Y, Zhang X L, et al. "Superaerophobic" nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities[J]. Journal of the American Chemical Society,2019,141(18):7537-7543. doi: 10.1021/jacs.9b02527
    [9] Sun H, Xu X, Kim H, et al. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications[J]. Energy Environmental Materials,2023,6(5):e12441. doi: 10.1002/eem2.12441
    [10] Gao H, Liu J, Zhang Z, et al. Electrochemical etching induced high-valence cobalt with defects site for boosting electrochemical water splitting[J]. Chemical Engineering Journal,2023,463:142224. doi: 10.1016/j.cej.2023.142224
    [11] Kong Z, Maswadeh Y, Vargas J, et al. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions[J]. Journal of the American Chemical Society,2020,142(3):1287-1299. doi: 10.1021/jacs.9b10239
    [12] Tao L, Wang Y, Zou Y, et al. Charge transfer modulated activity of carbon-based electrocatalysts[J]. Advanced Energy Materials,2019,10(11):1901227.
    [13] Zhang Y, Liu H, Zhao S, et al. Evolution of defects in electrocatalysts[J]. Advanced Materials,2023,35(9):e2209680. doi: 10.1002/adma.202209680
    [14] Jia Y, Yao X. Defects in carbon-based materials for electrocatalysis: Synthesis, recognition, and advances[J]. Account of Chemical Research,2023,56(8):948-958. doi: 10.1021/acs.accounts.2c00809
    [15] Zhang J, Xia Z, Dai L. Carbon-based electrocatalysts for advanced energy conversion and storage[J]. Science Advances,2015,1(7):e1500564. doi: 10.1126/sciadv.1500564
    [16] Wang J, Kong H, Zhang J, et al. Carbon-based electrocatalysts for sustainable energy applications [J]. Progress in Materials Science 2021, 116: 100717.
    [17] Huang Z F, Song J, Dou S, et al. strategies to break the scaling relation toward enhanced oxygen electrocatalysis [J]. Matter 2019, 1 (6): 1494-1518.
    [18] Wei C, Rao R R, Peng J, et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Advanced Materials,2019,31(31):1806296. doi: 10.1002/adma.201806296
    [19] Guo L Y, Li J F, Lu Z W, et al. Biomass-derived carbon-based multicomponent integration catalysts for electrochemical water splitting[J]. ChemSusChem,2023,16(17):e202300214. doi: 10.1002/cssc.202300214
    [20] Salah A, Zhang L, Tan H, et al. Advanced Ru/Ni/WC@ NPC multi-interfacial electrocatalyst for efficient, sustainable hydrogen and chlor-alkali co-production[J]. Advanced Energy Materials,2022,12(21):2200332. doi: 10.1002/aenm.202200332
    [21] Darband G B, Aliofkhazraei M, Shanmugam S. Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting[J]. Renewable and Sustainable Energy Reviews,2019,114:109300. doi: 10.1016/j.rser.2019.109300
    [22] Luo Y, Tang L, Khan U, et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density[J]. Nature Communications,2019,10(1):269. doi: 10.1038/s41467-018-07792-9
    [23] Luo Y, Zhang Z, Chhowalla M, et al. Recent advances in the design of electrocatalysts for high-current-density water splitting[J]. Advanced Materials,2022,34(16):e2108133. doi: 10.1002/adma.202108133
    [24] Zhao Z L, Wang Q, Huang X, et al. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media[J]. Energy Environmental Science,2020,13(12):5143-5151. doi: 10.1039/D0EE01960G
    [25] Zhu J, Guo Y, Liu F, et al. Regulative electronic states around ruthenium/ruthenium disulphide heterointerfaces for efficient water splitting in acidic media[J]. Angewandte Chemie International Edition,2021,133(22):12436-12442.
    [26] Wang Y, Jiao Y, Yan H, et al. Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting[J]. Angewandte Chemie International Edition,2022,134(12):e202116233.
    [27] Yang J, Mohmad A R, Wang Y, et al. Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution[J]. Nature Materials,2019,18(12):1309-1314. doi: 10.1038/s41563-019-0463-8
    [28] Xu X X, Zhang N C, Wang J Y, et al. The synthesis of iron-nitrogen sites embedded in electrospun carbon nanofibers with an excellent oxygen reduction reaction activity in alkaline/acidic media[J]. New Carbon Mater,2023,38(1):154-161.
    [29] Yang F, Luo Y, Yu Q, et al. A durable and efficient electrocatalyst for saline water splitting with a current density exceeding 2000 mA cm−2[J]. Advanced Functional Materials,2021,31(21):2010367. doi: 10.1002/adfm.202010367
    [30] Shinagawa T, Garcia-Esparza A T, Takanabe K J S R. Insight on tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion[J]. Scientific Reports,2015,5(1):13801. doi: 10.1038/srep13801
    [31] Bai X, Pang Q Q, Du X, et al. Integrating runi alloy in s-doped defective carbon for efficient hydrogen evolution in both acidic and alkaline media[J]. Chemical Engineering Journal,2021,417:129319. doi: 10.1016/j.cej.2021.129319
    [32] Li L, Wang P, Shao Q, et al. Metallic nanostructures with low dimensionality for electrochemical water splitting[J]. Chemical Society Reviews,2020,49(10):3072-3106. doi: 10.1039/D0CS00013B
    [33] Akbar K, Hussain S, Truong L, et al. Induced superhydrophobicity onto a non-super aerophobic catalytic surface for enhanced hydrogen evolution reaction[J]. ACS Applied Materials Interfaces,2017,9(50):43674-43680. doi: 10.1021/acsami.7b13918
    [34] García de Arquer F P, Dinh C T, Ozden A, et al. CoP2 electrolysis to multicarbon products at activities more remarkable than 1 A cm−2[J]. Science,2020,367(6478):661-666. doi: 10.1126/science.aay4217
    [35] Ifkovits Z P, Evans J M, Meier M C, et al. Decoupled electrochemical water-splitting systems: A review and perspective[J]. Energy Environmental Science,2021,14(9):4740-4759. doi: 10.1039/D1EE01226F
    [36] Wang X, Jia Y, Mao X, et al. A Directional synthesis for topological defectin carbon[J]. Chem,2020,6:2009-2023. doi: 10.1016/j.chempr.2020.05.010
    [37] Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science,2009,323(5915):760-764. doi: 10.1126/science.1168049
    [38] Tsounis C, Subhash B, Priyank V, et al. Pt single atom electrocatalysts at graphene edges for efficient alkaline hydrogen evolution[J]. Advanced Functional Materials,2022,32:2203067. doi: 10.1002/adfm.202203067
    [39] Wang J, Xu F, Jin H, et al. Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materials,2017,29 (4):1605838. doi: 10.1002/adma.201605838
    [40] Gao K, Wang B, Tao L, et al. Efficient metal-free lectrocatalysts from N-doped carbon nanomaterials: Mono doping and Co-doping[J]. Advanced Materials,2019,31:1805121. doi: 10.1002/adma.201805121
    [41] Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present and future[J]. Advanced Materials,2019,31:1804799. doi: 10.1002/adma.201804799
    [42] Jia Y, Zhang L, Du A, et al. Defect graphene as a functional catalyst for electrochemical reactions[J]. Advanced Materials,2016,28:9532-9538. doi: 10.1002/adma.201602912
    [43] Lee G, Wang C, Yoon E, et al. Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers[J]. Physical Review Letters,2005,95:205501. doi: 10.1103/PhysRevLett.95.205501
    [44] Lee G, Wang C, Yoon E, et al. The formation of pentagon heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube[J]. Applied Physics Letters,2008,92:043104. doi: 10.1063/1.2837632
    [45] Tao L, Wang Q, Dou S, et al. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. Chemical Communication,2016,52:2764-2767. doi: 10.1039/C5CC09173J
    [46] Deng J, Li M, Wang Y. Biomass-derived carbon: Synthesis and applications in energy storage and conversion[J]. Green Chemistry,2016,18:4824-54. doi: 10.1039/C6GC01172A
    [47] Hasegawa G, Deguchi T, Kanamori K, et al. High-level doping of nitrogen, phosphorus, and sulfur into activated carbon monoliths and their electrochemical capacitances[J]. Chemistry of Materials,2015,27:4703-12. doi: 10.1021/acs.chemmater.5b01349
    [48] Cui H, Zhou Z, Jia D. Heteroatom-doped graphene as electrocatalysts for air cathodes[J]. Materials Horizons,2017,4:7-19.
    [49] Zhao Z, Xia Z, Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions [J]. ACS Catalysis, 2016, 6: 1553-1558
    [50] Yang H, Miao J, Hung S, et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal free bifunctional electrocatalyst[J]. Science Advances,2016,2:e1501122. doi: 10.1126/sciadv.1501122
    [51] Tian Y, Ye Y, Wang X, et al. Three-dimensional N doped, plasma-etched graphene: Highly active metal-free catalyst for hydrogen evolution reaction[J]. Applied Catalysis A-General,2017,529:127-133. doi: 10.1016/j.apcata.2016.10.021
    [52] Wang Z, Hao X, Jiang Z, et al. C and N hybrid coordination derived Co-C-N complex as a highly efficient electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society,2015,137:15070-3. doi: 10.1021/jacs.5b09021
    [53] Zheng Y, Jiao Y, Jaroniec M, et al. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory[J]. Angewandte Chemie International Edition,2015,54:52-65. doi: 10.1002/anie.201407031
    [54] Su J, Yang Y, Xia G, et al. Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media[J]. Nature Communications,2017,8 (1):14969. doi: 10.1038/ncomms14969
    [55] Deng J, Ren P, Deng D, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angewandte Chemie International Edition,2015,54:2100-4. doi: 10.1002/anie.201409524
    [56] Jin H, Wang J, Su D, et al. In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution[J]. Journal of the American Chemical Society,2015,137:2688-94. doi: 10.1021/ja5127165
    [57] Su J, Xia G, Li R, et al. Co3ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts[J]. Journal of Materials Chemistry A,2016,4:9204-12. doi: 10.1039/C6TA00945J
    [58] Elumeeva K, Masa J, Medina D, et al. Cobalt boride modified with N-doped carbon nanotubes as a high-performance bi functional oxygen electrocatalyst[J]. Journal of Materials Chemistry A,2017,5:21122-9. doi: 10.1039/C7TA06995B
    [59] Xiao J, Zhao C, Hu C, et al. Pudding-typed cobalt sulfides/nitrogen and sulfur dual-doped hollow carbon spheres as a highly efficient and stable oxygen reduction electrocatalyst[J]. Journal of Power Sources,2017,348:183-92. doi: 10.1016/j.jpowsour.2017.03.011
    [60] Chen M, Qi J, Guo D, et al. Facile synthesis of sponge-like Ni3N/NC for electrocatalytic water oxidation[J]. Chemical Communication,2017,53:9566-9. doi: 10.1039/C7CC05172G
    [61] Hou C, Cao S, Fu W, et al. Ultrafine CoP nanoparticles supported on carbon nanotubes as highly active electrocatalyst for both oxygen and hydrogen evolution in basic media[J]. ACS Applied Materials Interfaces,2015,7:28412-9. doi: 10.1021/acsami.5b09207
    [62] Meng T, Qin J, Wang S, et al. In situ coupling of Co0.85Se and N-doped carbon via one-step selenization of metal-organic frameworks as a trifunctional catalyst for overall water splitting and Zn-air batteries[J]. Journal of Materials Chemistry A,2017,5:7001-14. doi: 10.1039/C7TA01453H
    [63] Xiong P, Ma R, Sakai N, et al. Unilamellar metallic MoS2/graphene superlattice for efficient sodium storage and hydrogen evolution[J]. ACS Energy Letters,2018,3:997-1005. doi: 10.1021/acsenergylett.8b00110
    [64] Zhang C, Pu Z, Amiinu I, et al. Co2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder free properties for efficient hydrogen evolution reactions[J]. Nanoscale,2018,10:2902-7. doi: 10.1039/C7NR08148K
    [65] Zhang Y, Xia X, Cao X, et al. Ultrafine metal nanoparticles/N-doped porous carbon hybrids coated on carbon fibers as flexible and binder-free water splitting catalysts[J]. Advanced Energy Materials,2017,7:1700220. doi: 10.1002/aenm.201700220
    [66] Zhou P, Lv X, Tao S, et al. Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation[J]. Advanced Materials,2022,34(42):e2204089. doi: 10.1002/adma.202204089
    [67] Gupta S, Patel M K, Miotello A, et al. Metal boride-based catalysts for electrochemical water-splitting: A review[J]. Advanced Functional Materials,2019,30(1):1906481.
    [68] Lu Z, Li Y, Lei X, et al. Nanoarray based “superhydrophobic” surfaces for gas evolution reaction electrodes[J]. Materials Horizons,2015,2(3):294-298. doi: 10.1039/C4MH00208C
    [69] Zhang P, Wang S, Wang S, et al. Superwetting surfaces under different media: Effects of surface topography on wettability[J]. Small,2015,11(16):1939-1946. doi: 10.1002/smll.201401869
    [70] Li W, Zhao L, Jiang X, et al. , Confinement engineering of electrocatalyst surfaces and interfaces[J]. Advanced Functional Materials,2022,32(46):2207727. doi: 10.1002/adfm.202207727
    [71] Huang Y, Liu M, Wang J, et al. Controllable underwater oil-adhesion-interface films assembled from nonspherical particles[J]. Advanced Functional Materials,2011,21(23):4436-4441. doi: 10.1002/adfm.201101598
    [72] Ling W Y L, Lu G, Ng T. Increased stability and size of a bubble on a superhydrophobic surface[J]. Langmuir,2011,27(7):3233-3237. doi: 10.1021/la104982p
    [73] Ma B, Yang Z, Chen Y, et al. Nickel cobalt phosphide with a three-dimensional nanostructure is a highly efficient electrocatalyst for hydrogen evolution reactions in both acidic and alkaline electrolytes[J]. Nano Research,2019,12:375-380. doi: 10.1007/s12274-018-2226-2
    [74] George J E, Chidangil S, George S. Recent progress in fabricating superaerophobic and superaerophilic surfaces[J]. Advanced Materials Interfaces,2017,4(9):1601088. doi: 10.1002/admi.201601088
    [75] Wen L, Tian Y, Jiang L, et al. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition,2015,54(11):3387-3399. doi: 10.1002/anie.201409911
    [76] Yao X, Song Y, Jiang L et al. Applications of bio‐inspired special wettable surfaces[J]. Advanced Materials,2011,23(6):719-734. doi: 10.1002/adma.201002689
    [77] Dukovic J, Tobias C. The influence of attached bubbles on the potential drop and current distribution at gas-evolving electrodes[J]. Journal of the Electrochemical Society,1987,134(2):331. doi: 10.1149/1.2100456
    [78] Xu H G, Zhang X Y, Ding Y, et al. Rational design of hydrogen evolution reaction electrocatalysts for commercial alkaline water electrolysis[J]. Small Structures, 2023: 2200404.
    [79] Lu Z, Zhu W, Yu X, et al. Ultrahigh hydrogen evolution performance of under-water “superhydrophobic” MoS2 nanostructured electrodes[J]. Advanced Materials,2014,26(17):2683-2687. doi: 10.1002/adma.201304759
    [80] Wang M, Wang Z, Guo Z J. Water electrolysis enhanced by super gravity field for hydrogen production[J]. International Journal of Hydrogen Energy,2010,35(8):3198-3205. doi: 10.1016/j.ijhydene.2010.01.128
    [81] Wang C C, Chen C Y. Water electrolysis in the presence of an ultrasonic field[J]. Electrochimica Acta,2009,54(15):3877-3883. doi: 10.1016/j.electacta.2009.01.087
    [82] Liu G, Wong W S Y, Kraft M, et al. Wetting-regulated gas-involving (photo) electrocatalysis: biomimetics in energy conversion[J]. Chemical Society Reviews,2021,50(18):10674-10699. doi: 10.1039/D1CS00258A
    [83] Wang J, Yang Q, Wang M, et al. Rose petals with a novel and steady air bubble pinning effect in aqueous media[J]. Soft Matter,2012,8(7):2261-2266. doi: 10.1039/c2sm06705f
    [84] Luo J, Zhang Q, Garcia-Martinez J, et al. Adsorptive and acidic properties, reversible lattice oxygen evolution, and catalytic mechanism of cryptomelane-type manganese oxides as oxidation catalysts[J]. Journal of the American Chemical Society,2008,130(10):3198-3207. doi: 10.1021/ja077706e
    [85] Jung J, Ku J, Park Y S, et al. Advances in ion conducting membranes and binders for high temperature polymer electrolyte membrane fuel cells[J]. Polymer Reviews,2022,62(4):789-825. doi: 10.1080/15583724.2022.2025602
    [86] Wang K, Tang F, Yao X Z, et al. Chemical vapor deposition of two-dimensional transition metal sulfides on carbon paper for electrocatalytic hydrogen evolution[J]. New Carbon Materials,2022,37(6):1183-1191. doi: 10.1016/S1872-5805(21)60078-1
    [87] Yu J, Garcés-Pineda F A, González-Cobos J, et al. Sustainable oxygen evolution electrocatalysis in aqueous 1 M H2SO4 with earth abundant nanostructured Co3O4[J]. Nature Communications,2022,13(1):4341. doi: 10.1038/s41467-022-32024-6
    [88] Cui X, Ren P, Ma C, et al. Robust interface ru centers for high‐performance acidic oxygen evolution[J]. Advanced Materials,2020,32(25):1908126. doi: 10.1002/adma.201908126
    [89] Lutterman D A, Surendranath Y, Nocera D G. A self-healing oxygen-evolving catalyst[J]. Journal of the American Chemical Society,2009,131(11):3838-3839. doi: 10.1021/ja900023k
    [90] Chen T W, Kalimuthu P, Veerakumar P, et al. Review-recent advances in the development of porous carbon-based electrocatalysts for water-splitting reaction [J]. Journal of The Electrochemical Society, 2022, 169 (5):
    [91] Chong L, Gao G, Wen J, et al. La-and Mn-doped cobalt spinel oxygen evolution catalyst for proton exchange membrane electrolysis[J]. Science,2023,380(6645):609-616. doi: 10.1126/science.ade1499
    [92] Möller S, Barwe S, Masa J, et al. Online monitoring of electrochemical carbon corrosion in alkaline electrolytes by differential electrochemical mass spectrometry[J]. Angewandte Chemie International Edition,2020,59(4):1585-1589. doi: 10.1002/anie.201909475
    [93] Iwata R, Zhang L, Wilke K L, et al. Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting[J]. Joule,2021,5(4):887-900. doi: 10.1016/j.joule.2021.02.015
    [94] Liu Y, Yang Z, Zou Y, et al. Interfacial micro-environment of electrocatalysis and its applications for organic electro-oxidation reaction[J]. Small, 2023: e2306488.
    [95] Zheng X, Shi X, Ning H, et al. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution[J]. Nature Communications,2023,14:4209. doi: 10.1038/s41467-023-39963-8
    [96] Khan M A, Al Attas T, Roy S, et al. Seawater electrolysis for hydrogen production: A solution looking for a problem[J]. Energy Environmental Science,2021,14(9):4831-4839. doi: 10.1039/D1EE00870F
    [97] Kwon Y, Schouten K J P, van der Waal J C, et al. Electrocatalytic conversion of furanic compounds[J]. ACS Catalysis,2016,6(10):6704-6717. doi: 10.1021/acscatal.6b01861
    [98] Pérez Gallent E, Figueiredo M C, Katsounaros I, et al. Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions[J]. Electrochimica Acta,2017,227:77-84. doi: 10.1016/j.electacta.2016.12.147
    [99] Palkovits R, Delidovich I. Efficient utilization of renewable feedstocks: The role of catalysis and process design[J]. Philosophical transactions, Mathematical, Physical and Engineering sciences,2018,376(2110):2017006.
    [100] Hu L, Xu J, Zhou S, et al. Catalytic advances in the production and application of biomass-derived 2, 5-dihydroxymethylfuran[J]. ACS Catalysis,2018,8(4):2959-2980. doi: 10.1021/acscatal.7b03530
    [101] Mohle S, Zirbes M, Rodrigo E, et al. Modern electrochemical aspects for the synthesis of value-added organic products[J]. Angewandte Chemie International Edition,2018,57(21):6018-6041. doi: 10.1002/anie.201712732
    [102] Kubota S R, Choi K S. Electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation[J]. ChemSusChem,2018,11(13):2138-2145. doi: 10.1002/cssc.201800532
    [103] Zhou B, Shi J, Jiang Y, et al. Enhanced dehydrogenation kinetics for ascorbic acid electrooxidation with ultra-low cell voltage and large current density[J]. Chinese Journal of Catalysis,2023,50:372-380. doi: 10.1016/S1872-2067(23)64446-8
    [104] Zhang Z, Huber G W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals[J]. Chemical Society Reviews,2018,47(4):1351-1390. doi: 10.1039/C7CS00213K
    [105] Dey A, Chroneos A, Braithwaite N S J, et al. Plasma engineering of graphene[J]. Applied Physics Reviews,2016,3(2):021301. doi: 10.1063/1.4947188
    [106] Román A M, Hasse J C, Medlin J W, et al. Elucidating acidic electro-oxidation pathways of furfural on platinum[J]. ACS Catalysis,2019,9(11):10305-10316. doi: 10.1021/acscatal.9b02656
    [107] Wang T, Tao L, Zhu X, et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction[J]. Nature Catalysis,2021,5(1):66-73. doi: 10.1038/s41929-021-00721-y
    [108] Chadderdon X H, Chadderdon D J, Pfennig T, et al. Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers[J]. Green Chemistry,2019,21(22):6210-6219. doi: 10.1039/C9GC02264C
    [109] Zhang Y R, Wang B X, Qin L, et al. A non-noble bimetallic alloy in the highly selective electrochemical synthesis of the biofuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural[J]. Green Chemistry,2019,21(5):1108-1113. doi: 10.1039/C8GC03689F
    [110] Young E R, Nocera D G, Bulović V. Direct formation of a water oxidation catalyst from thin-film cobalt[J]. Energy Environmental Science,2010,3(11):1726-1728. doi: 10.1039/c0ee00177e
    [111] McAlpin J G, Surendranath Y, Dinca M, et al. EPR evidence for Co (IV) species produced during water oxidation at neutral pH[J]. Journal of the American Chemical Society,2010,132(20):6882-6883. doi: 10.1021/ja1013344
    [112] Du W, Wang Q, Saxner D, et al. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction[J]. Journal of the American Chemical Society,2011,133(38):15172-83. doi: 10.1021/ja205649z
    [113] Sardar K, Ball S C, Sharman J D B, et al. Bismuth iridium oxide oxygen evolution catalyst from hydrothermal synthesis[J]. Chemistry of Materials,2012,24(21):4192-4200. doi: 10.1021/cm302468b
    [114] Bediako D K, Lassalle Kaiser B, Surendranath Y, et al. Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J]. Journal of the American Chemical Society,2012,134(15):6801-9. doi: 10.1021/ja301018q
    [115] Leonard K C, Bard A J. The study of multireactional electrochemical interfaces via a tip generation/substrate collection mode of scanning electrochemical microscopy: The hydrogen evolution reaction for Mn in acidic solution[J]. Journal of the American Chemical Society,2013,135(42):15890-6. doi: 10.1021/ja407395m
    [116] Chu X, Huang K, Han M, et al. Self-construction of magnetic hollow La0.7Sr0.3MnO3 microspheres with complex units[J]. Inorganic Chemistry,2013,52(8):4130-2. doi: 10.1021/ic400296b
    [117] Li Y, Wang H, Xie L, et al. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society,2011,133(19):7296-7299. doi: 10.1021/ja201269b
    [118] Hinnemann B, Moses P G, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society,2005,127(15):5308-5309. doi: 10.1021/ja0504690
    [119] Xu Y T, Xiao X, Ye Z M, et al. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution[J]. Journal of the American Chemical Society,2017,139(15):5285-5288. doi: 10.1021/jacs.7b00165
    [120] Wiechen M, Najafpour M M, Allakhverdiev S I, et al. Water oxidation catalysis by manganese oxides: Learning from evolution[J]. Energy Environmental Science,2014,7:2203-2212. doi: 10.1039/c4ee00681j
    [121] Huynh M, Bediako D K, Nocera D G. A functionally stable manganese oxide oxygen evolution catalyst in acid[J]. Journal of the American Chemical Society,2014,136(16):6002-10. doi: 10.1021/ja413147e
    [122] Sivanantham A, Ganesan P, Vinu A, et al. Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media[J]. ACS Catalysis,2019,10(1):463-493.
    [123] Das B, Rahaman A, Shatskiy A, et al. The impact of ligand carboxylates on electrocatalyzed water oxidation[J]. Accounts of Chemical Research,2021,54(17):3326-3337. doi: 10.1021/acs.accounts.1c00298
    [124] Feng J X, Tong S Y, Tong Y X, et al. Pt-like hydrogen evolution electrocatalysis on Pani/CoP hybrid nanowires by weakening the shackles of hydrogen ions on the surfaces of catalysts[J]. Journal of the American Chemical Society,2018,140(15):5118-5126. doi: 10.1021/jacs.7b12968
    [125] Zhong J Q, Yan K J, Yang J, et al. Microenvironment alters the oxygen reduction activity of metal/N/C catalysts at the triple-phase boundary[J]. ACS Catalysis,2022,12(15):9003-9010. doi: 10.1021/acscatal.2c00362
    [126] Sun J, Xue H, Lu L, et al. Atomic-level modulation of local coordination environment at Fe single-atom sites for enhanced oxygen reduction[J]. Applied Catalysis B: Environmental,2022,313:121429. doi: 10.1016/j.apcatb.2022.121429
    [127] Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions[J]. Nature Chemistry,2020,12(8):717-724. doi: 10.1038/s41557-020-0481-9
    [128] May A S, Biddinger J. Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions[J]. ACS Catalysis,2020,10(5):3212-3221. doi: 10.1021/acscatal.9b05531
    [129] Li X, Zhang L, Wang S, et al. Recent advances in aqueous-phase catalytic conversions of biomass platform chemicals over heterogeneous catalysts[J]. Frontiers in Chemistry,2019,7:948.
    [130] Lu S, Shi Y, Zhou W, et al. Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation[J]. Journal of the American Chemical Society,2022,144(7):3250-3258. doi: 10.1021/jacs.1c13374
    [131] Andronescu C, Seisel S, Wilde P, et al. Influence of temperature and electrolyte concentration on the structure and catalytic oxygen evolution activity of nickel-iron layered double hydroxide[J]. Chemistry–A European Journal,2018,24(52):13773-13777. doi: 10.1002/chem.201803165
    [132] Liu W, Wang X, Qu J, et al. Computation-guided design and preparation of durable and efficient WC-Mo2C heterojunction for hydrogen evolution reaction[J]. Cell Reports Physical Science,2022,3(3):100784. doi: 10.1016/j.xcrp.2022.100784
    [133] Zhang B, Wang L, Cao Z, et al. High-valence metals improve oxygen evolution reaction performance by modulating 3D metal oxidation cycle energetics[J]. Nature Catalysis,2020,3(12):985-992. doi: 10.1038/s41929-020-00525-6
    [134] Wang F L, Zhang X Y, Zhou J C, et al. Amorphous-crystalline FeNi2S4@NiFe nanograsses with molten salt as an industrially promising electrocatalyst for oxygen evolution[J]. Inorganic Chemistry Frontiers,2022,9(9):2068-2080. doi: 10.1039/D2QI00003B
    [135] Feng K, Zhang D, Liu F, et al. Highly efficient oxygen evolution by a thermocatalytic process cascaded electrocatalysis over sulfur‐treated Fe‐based metal-organic‐frameworks[J]. Advanced Energy Materials,2020,10(16):2000184. doi: 10.1002/aenm.202000184
    [136] Chen C, Li S, Zhu X, et al. Balancing sub‐reaction activity to boost electrocatalytic urea synthesis using a metal‐free electrocatalyst[J]. Carbon Energy,2023,5(10):e345. doi: 10.1002/cey2.345
    [137] Tong Y, Wu J, Chen P, et al. Vibronic superexchange in double perovskite electrocatalyst for efficient electrocatalytic oxygen evolution[J]. Journal of the American Chemical Society,2018,140(36):11165-11169. doi: 10.1021/jacs.8b06108
    [138] Chen N, Paek S Y, Lee J Y, et al. High-performance anion exchange membrane water electrolyzers with a current density of 7. 68 A cm−2 and a durability of 1000 hours[J]. Energy Environmental Science,2021,14(12):6338-6348. doi: 10.1039/D1EE02642A
  • 加载中
图(8)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  149
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-16
  • 录用日期:  2023-11-29
  • 修回日期:  2023-11-29
  • 网络出版日期:  2023-12-05
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回