留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯基二氧化碳还原电催化材料研究进展

武泽林 王聪伟 张晓祥 郭全贵 王俊英

武泽林, 王聪伟, 张晓祥, 郭全贵, 王俊英. 石墨烯基二氧化碳还原电催化材料研究进展. 新型炭材料(中英文), 2024, 39(1): 100-130. doi: 10.1016/S1872-5805(24)60839-5
引用本文: 武泽林, 王聪伟, 张晓祥, 郭全贵, 王俊英. 石墨烯基二氧化碳还原电催化材料研究进展. 新型炭材料(中英文), 2024, 39(1): 100-130. doi: 10.1016/S1872-5805(24)60839-5
WU Ze-lin, WANG Cong-wei, ZHANG Xiao-xiang, GUO Quan-gui, WANG Jun-ying. Graphene-based CO2 reduction electrocatalysts: A review. New Carbon Mater., 2024, 39(1): 100-130. doi: 10.1016/S1872-5805(24)60839-5
Citation: WU Ze-lin, WANG Cong-wei, ZHANG Xiao-xiang, GUO Quan-gui, WANG Jun-ying. Graphene-based CO2 reduction electrocatalysts: A review. New Carbon Mater., 2024, 39(1): 100-130. doi: 10.1016/S1872-5805(24)60839-5

石墨烯基二氧化碳还原电催化材料研究进展

doi: 10.1016/S1872-5805(24)60839-5
基金项目: 国家自然科学基金资助项目(22179138)、山西省自然科学基金(202103021224440,20210302123005)、中国科学院青年创新促进会(2020180)和山西省重大项目(20181102026)。
详细信息
    作者简介:

    武泽林,博士研究生. E-mail: wuzelin19@mails.ucas.ac.cn

    通讯作者:

    王聪伟,副研究员. E-mail: wangcongwei@sxicc.ac.cn

    郭全贵,研究员. E-mail: qgguo@sxicc.ac.cn

    王俊英,副研究员. E-mail: wangjy@sxicc.ac.cn

  • 中图分类号: O646.5

Graphene-based CO2 reduction electrocatalysts: A review

Funds: National Natural Science Foundation of China (22179138), Natural Science Foundation of Shanxi (202103021224440, 20210302123005), Youth Innovation Promotion Association CAS (2020180), and Shanxi Major Project (20181102026).
More Information
  • 摘要:

    通过电化学方法来减少二氧化碳(CO2),同时生产燃料和高附加值化学品,是一种克服全球变暖问题的有效策略,对于缓解能源和环境的双重压力具有重要的现实意义。由于CO2稳定的分子结构,设计高选择性、高能效和低成本的电催化剂是关键。石墨烯及其衍生物因其独特且优异的物理、力学和电学性能,相对较低的成本,使其在CO2电还原方面具有竞争力。此外,石墨烯基材料的表面可以通过使用不同的方法进行改性,包括掺杂、缺陷工程、构建复合结构和包覆形状。首先,本文综述了电化学CO2还原的基本概念、评价标准,以及催化原理和过程。其次,简要介绍了石墨烯基催化剂的制备方法,并按照催化位点的类别,总结了石墨烯基催化剂近年来的研究进展。最后,对CO2电还原技术未来发展方向进行了探讨与展望。

  • FIG. 2914.  FIG. 2914.

    FIG. 2914..  FIG. 2914.

    图  1  催化剂上CO2RR的反应途径[45]

    Figure  1.  The reaction pathways for the CO2RR on the catalysts[45]. Reprinted with permission

    图  2  (a)NGQDs的TEM照片,(b)NGQDs的HRTEM照片,(c)NGQDs在不同电势下的法拉第效率图[104];(d)GQD-NH2-H的TEM照片(插图为HRTEM照片),(e)不同-NH2含量的GQD在不同电势下的CH4法拉第效率图,(f)不同-NH2含量的GQD在不同电势下的CH4部分电流密度图[105];(g)N-aGQDs-A9的TEM照片,(h)N-aGQDs-A9的HRTEM照片,(i)N-aGQDs-A9在−0.98 V (vs. RHE)的恒定电压下工作的稳定性能图[106]

    Figure  2.  (a) TEM and (b) HRTEM images of the NGQDs, (c) Faradaic efficiency at various applied potential for NGQDs[104]. (d) TEM and HRTEM images (inset) of the GQD-NH2-H, (e) Faradaic efficiency of CH4, (f) Current density of CH4[105]. (g) TEM and (h) HRTEM images of the N-aGQDs-A9, (i) Stability of N-aGQDs-A9 operated at a constant potential of -0.98 V (vs. RHE)[106]. Reprinted with permission

    图  3  具有不同杂原子(B、N、S、P、F、Cl、Br和I)的掺杂石墨烯的示意图[27]

    Figure  3.  Illustration of doped graphene with different heteroatoms (B, N, S, P, F, Cl, Br, and I)[27]. Reprinted with permission

    图  4  (a)N-GRW的合成过程示意图[84];(b)BN-C-1的合成过程示意图[85];(c)PGA的合成过程示意图[116]

    Figure  4.  (a) Schematic illustration of the synthesis process of N-GRW[84]. (b) Schematic illustration of the synthesis process of BN-C-1[85]. (c) Schematic illustration of the synthesis process of PGA[116]. Reprinted with permission

    图  5  (a)Fe-N-G-p催化剂的合成过程示意图[87];(b)Fe/NG催化剂的合成过程示意图[121];(c)催化剂的合成过程示意图[90];(d)单原子FeN4和FeN5催化剂的合成路线[89]

    Figure  5.  (a) Schematic of the synthesis process of the Fe-N-G-p catalyst[87]. (b) Schematic of the synthesis process of the Fe/NG catalyst[121]. (c) Schematic of the synthesis process of the rGO-PVP-ZIFc catalyst[90]. (d) Synthetic route towards single-atom FeN4 and FeN5 catalysts[89]. Reprinted with permission

    图  6  (a)CoPc-NVG/CC杂化化合物的合成过程示意图,以及NVG中与氮位相连的CoPc分子的原子构型[118];(b)DrGO-CoPc的合成过程示意图[119];(c)N-CoMe2Pc/NRGO合成过程示意图[95];(d)NapCo@SNG合成过程示意图[102];(e)Co-u-COF/G的合成过程示意图[103];(f)CGF-CoTMPyP的合成过程示意图[117]

    Figure  6.  (a) The schematic illustration of the synthesis process of CoPc-NVG/CC hybrids, and the atomic configurations of a CoPc molecule bonded to the nitrogen site in NVG[118]. (b) Schematic illustration of the synthesis process of DrGO-CoPc[119]. (c) Schematic illustration of the synthesis process of N-CoMe2Pc/NRGO[95]. (d) Schematic illustration of the synthesis process of NapCo@SNG[102]. (e) Schematic illustration of the synthesis process of Co-u-COF/G[103]. (f) Schematic illustration of the synthesis process of CGF-CoTMPyP[117]. Reprinted with permission

    图  7  (a)Ni2+@NG催化剂的合成示意图[83];(b)NiSA-NGA的合成示意图[80];(c)Ni-N-MEGO的合成示意图[115];(d)Ni-N-rGO的合成示意图[124];(e)Ni-B2N4的合成示意图[125];(f)使用可回收的氯化钠模板大规模生产3D SAM-G催化剂的合成示意图[91];(g)Ni-NG-acid的合成示意图[81]

    Figure  7.  (a) Schematic illustration of the synthesis process of Ni2+@NG catalyst[83]. (b) Schematic illustration of the synthesis process of NiSA-NGA[80]. (c) Schematic illustration of the synthesis process of Ni-N-MEGO[115]. (d) Schematic illustration of the synthesis process of Ni-N-rGO[124]. (e) Schematic illustration of the synthesis process of Ni-B2N4[125]. (f) Schematic illustration for mass production of 3D SAM-G catalysts using recyclable NaCl templates[91]. (g) Schematic illustration of the synthesis process of Ni-NG-acid[81]. Reprinted with permission

    图  8  (a)Zn-N-G的合成示意图[126];(b)Mo@NG的合成示意图[128];(c)Li-N, O/C的合成路线示意图[129];(d)Ag2-G的合成示意图[130];(e)Bi单原子的合成示意图[113];(f)在N掺杂石墨烯上大规模合成单原子Snδ+的合成示意图[82]

    Figure  8.  (a) Schematic illustration of the synthesis process of Zn-N-G[126]. (b) Schematic illustration of the synthesis process of Mo@NG[128]. (c) Schematic illustration of the synthetic route leading to Li-N, O/C[129]. (d) Schematic illustration of the synthesis process of Ag2-G[130]. (e) Schematic illustration of the synthesis process of Bi single atom[113]. (f) Scheme illustration for large-scale synthesis of the single-atom Snδ+ on N-doped graphene[82]. Reprinted with permission

    图  9  (a)Ni@N-C/rGO(L)材料的合成示意图[131];(b)SL-NG的合成示意图[132]

    Figure  9.  (a) Schematic illustration of the synthesis process of Ni@N-C/rGO(L) materials[131]. (b) Schematic illustration of the synthesis process of SL-NG[132]. Reprinted with permission

    图  10  (a)VG负载的Cu催化剂的合成示意图[98];(b)GO-VB6-Cu的合成示意图[78]

    Figure  10.  (a) Schematic illustration of the synthesis process of electrochemically treated Cu catalysts supported by VG[98]. (b) Schematic illustration of the synthesis process of GO-VB6-Cu[78]. Reprinted with permission

    图  11  (a)不同炭材料(CB、GA和NGAhdrz)负载的铋催化剂的合成过程和CO2RR性能示意图[107];(b)具有多层结构的In/N-dG催化剂制备示意图[136]

    Figure  11.  (a) Schematic diagram of the synthesis process and the CO2RR performance of Bismuth catalysts supported on different carbon materials (CB, GA, and NGAhdrz)[107]. (b) Schematic diagram illustrating the preparation of In/N-dG catalyst with multilayer structure[136]. Reprinted with permission

    图  12  (a)Cu-In/PNGC的合成示意图[137];(b)CuSn-NP/NG的合成示意图[138];(c)CuSn-LIG的合成示意图[114]

    Figure  12.  (a) Schematic illustration of the synthesis process of Cu-In/PNGC[137]. (b) Schematic illustration of the synthesis process of CuSn-NP/NG[138]. (c) Schematic illustration of the synthesis process of CuSn-LIG[114]. Reprinted with permission

    图  13  (a)NiO/NLG的合成示意图[140];(b)R-ZnO/rGO催化剂的结构示意图[141]

    Figure  13.  (a) Schematic illustration of the synthesis process of NiO/NLG [140]. (b) Structural diagram of the R-ZnO/rGO catalyst[141]. Reprinted with permission

    图  14  (a)SnO2/tert-GO的合成示意图[142];(b)Bi2O3/p-rGO的合成示意图[143];(c)In2O3$\supset $NC@GO的合成示意图[144];(d)NG-Co3O4和RG-Co3O4电催化剂的合成示意图[145];(e)rGO-Co3O4的合成示意图[146]

    Figure  14.  (a) Schematic illustration of the synthesis process of SnO2/tert-GO[142]. (b) Schematic illustration of the synthesis of Bi2O3/p-rGO[143]. (c) Schematic illustration of the synthesis of In2O3$\supset $NC@GO[144]. (d) Schematic illustration of the synthesis of NG-Co3O4 and RG-Co3O4 catalysts[145]. (e) Schematic illustration of the synthesis of rGO-Co3O4[146]. Reprinted with permission

    图  15  (a)CG electrodes的合成示意图[147];(b)Cu2O/Cu@C/NG的合成示意图[148];(c)Cu2O/NRGO的合成示意图[149];(d)CuO/NG_AN的合成示意图[150];(e)NG/Cu、rGO/Cu和BG/Cu的合成及CO2RR选择性示意图[151]

    Figure  15.  (a) Schematic illustration of the synthesis process of CG electrodes[147]. (b) Schematic illustration of the synthesis of Cu2O/Cu@C/NG[148]. (c) Schematic illustration of the synthesis of Cu2O/NRGO[149]. (d) Schematic illustration of the synthesis of CuO/NG_AN[150]. (e) Schematic illustration of the difference in selectivity over NG/Cu, rGO/Cu, and BG/Cu in electrochemical CO2RR[151]. Reprinted with permission

    图  16  CuZnx/NGN的合成示意图[110]

    Figure  16.  Schematic for the preparation of CuZnx/NGN[110]. Reprinted with permission

    图  17  (a)CuS/N, S-rGO的合成示意图[108];(b)2D In2S3-rGO的合成示意图[109];(c)Ag2S/N-S-doped rGO的合成示意图[154];(d)rGO-PEI-MoSx的合成示意图[155]

    Figure  17.  (a) Schematic illustration of the synthesis process of CuS/N, S-rGO[108]. (b) Schematic illustration of the synthesis of 2D In2S3-rGO[109]. (c) Schematic illustration of the synthesis process of Ag2S/N-S-doped rGO[154]. (d) Schematic illustration of the synthesis process of rGO-PEI-MoSx[155]. Reprinted with permission

    图  18  (a)Fe-N-G/bC的合成示意图[120];(b)N-Fe3C/rGO NPs的合成示意图[156]

    Figure  18.  (a) Schematic illustration of the synthesis process of Fe-N-G/bC[120]. (b) Schematic illustration of the synthesis process of N-Fe3C/rGO NPs[156]. Reprinted with permission

    表  1  CO2电化学还原的热力学反应及其相应的标准氧化还原电势[35]

    Table  1.   The electrochemical thermodynamic reactions for CO2 reduction and their corresponding standard redox potentials[35]. Reprinted with permission

    ProductsAcidBase
    EquationE0/VEquationE0/V
    H22H++2e→H20.0002H2O+2e→H2+2OH−0.828
    COCO2+2H++2e→CO+H2O−0.104CO2+H2O+2e→CO+2OH−0.932
    CH4CO2+8H++8e→CH4+2H2O0.169CO2+6H2O+8e→CH4+8OH−0.659
    CH3OHCO2+6H++6e→CH3OH+H2O0.016CO2+5H2O+6e→CH3OH+6OH−0.812
    HCOOHCO2+2H++2e→HCOOH−0.171CO2+H2O+2e→HCOO+OH−0.639
    C2H42CO2+12H++12e→C2H4+4H2O0.0852CO2+8H2O+12e→C2H4+12OH−0.743
    C2H62CO2+14H++14e→C2H6+4H2O0.1442CO2+10H2O+14e→C2H6+14OH−0.685
    CH3CH2OH2CO2+12H++12e→CH3CH2OH+3H2O0.0842CO2+9H2O+12e→CH3CH2OH+12OH−0.744
    CH3COOH2CO2+8H++8e→CH3COOH+2H2O0.0982CO2+5H2O+8e→CH3COO+7OH−0.653
    C3H7OH3CO2+18H++18e→CH3CH2CH2OH+5H2O0.0953CO2+13H2O+18e→CH3CH2CH2OH+18OH−0.733
    下载: 导出CSV

    表  2  CO2RR对不同产物的标准电极电势(pH=7)[63-65]

    Table  2.   Standard electrode potentials of CO2RR towards different products at pH=7[63-65]

    ReactionE0(vs. RHE)/VProducts
    CO2 + 2H+ + 2e → CO + H2O−0.10CO
    CO2 + 2H+ + 2e → HCOOH−0.19HCOOH
    2H+ + 2e → H20H2
    CO2 + 6H+ + 6e → CH3OH + H2O0.03CH3OH
    2CO2 + 12H+ + 12e → C2H4 + 4H2O0.08C2H4
    2CO2 + 12H+ + 12e → C2H5OH + 3H2O0.09C2H5OH
    3CO2 + 18H+ + 18e → C3H7OH + 5H2O0.10C3H7OH
    2CO2 + 8H+ + 8e → CH3COOH + 2H2O0.11CH3COOH
    2CO2 + 14H+ + 14e → C2H6 + 4H2O0.14C2H6
    CO2 + 8H+ + 8e → CH4 + 2H2O0.17CH4
    下载: 导出CSV

    表  3  石墨烯基电催化材料在CO2RR中的电催化性能

    Table  3.   The electrocatalytic performance of recent graphene-based catalysts in electrochemical CO2RR

    CatalystsElectrolyteOnset
    potential
    (vs. RHE)/V
    Applied
    potential
    (vs. RHE)/V
    Current density/
    (mA·cm−2)
    Main productFaradaic
    efficiency
    StabilityReference
    NGQDs1.0 M KOH−0.3−0.890.3Total
    C2H4
    90.0%
    31.0%
    [104]
    GQD-NH2−H1.0 M KOH−0.6−1.0200.0CH470.0%10 h[105]
    N-aGQDs-A91.0 M KOH−0.6−1.0176.0CH450.0%35 h[106]
    NG-800 Foam0.1 M KHCO3−0.3−0.61.8CO85.0%5 h[111]
    N-GRW0.5 M KHCO3−0.2−0.46.9CO87.6%10 h[84]
    BN-C-10.1 M KHCO3−0.4−0.50.3CH468.0%12 h[85]
    N-Graphene(NG)0.5 M KHCO3−0.3−0.87.5HCOO73.0%12 h[86]
    N-functionalized GO0.1 M KHCO3−0.40.7C2H5OH37.0%[93]
    PGA0.5 M KHCO3−0.5−0.84.7C2H5OH48.7%70 h[116]
    Fe-N-G-p0.1 M KHCO3−0.3−0.64.5CO94.0%9 h[87]
    Fe/NG0.1 M KHCO3−0.3−0.62.5CO80.0%10 h[121]
    FePc-G0.1 M KHCO3−0.3−0.51.1CO90.0%10 h[75]
    FePGF0.1 M KHCO3−0.5−0.51.7CO98.7%10 h[79]
    FeN50.1 M KHCO3−0.3−0.51.8CO97.0%24 h[89]
    rGO-PVP-ZIFc0.5 M KHCO3−0.4−0.66.5CO98.6%8 h[90]
    CoPc-NVG/CC0.1 M KHCO3−0.6−0.814.0CO97.5%10 h[118]
    DrGO-CoPc0.1 M KHCO3−0.4−0.612.0CO90.2%20 h[119]
    CoN4/G0.1 M KHCO3−0.3−0.810.5CO95.0%15 h[96]
    VitB12@rGO0.5 M KHCO3−0.5−0.86.2CO94.5%10 h[122]
    N-CoMe2Pc/NRGO0.5 M KHCO3−0.4−0.89.7CO90.0%5 h[95]
    CPF-Co@LGO0.5 M KHCO3−0.4−0.721.0CO97.6%24 h[123]
    NapCo@SNG0.1 M KHCO3−0.4−0.82.3CO97.0%2.5 h[102]
    Co-u-COF/G0.5 M KHCO3−0.5−0.7
    −1.2
    8.2
    191.0
    CO97.0%
    99.0%
    30 h
    [103]
    rGO-CoTMPyP0.1 M Na2CO3−0.5−0.73.2CO
    HCOO
    45.0%
    24.3%
    6 h[97]
    CGF-CoTMPyP0.1 M NaHCO3−0.6−0.71.8CO
    CH4
    40.0%
    20.0%
    1.5 h[117]
    Ni2+@NG0.5 M KHCO3−0.4−0.710.2CO92.0%20 h[83]
    NiSA-NGA0.5 M KHCO3−0.4−0.85.0CO90.2%6 h[80]
    Ni-N-MEGO0.5 M KHCO3−0.3−0.726.8CO92.1%21 h[115]
    Ni-N-Gr0.1 M KHCO3−0.5−0.70.2CO80.0%5 h[88]
    Ni-N-rGO0.5 M KHCO3−0.4−0.823.0CO97.0%[124]
    Ni-B2N40.5 M KHCO3−0.5−0.810.5CO98.0%20 h[125]
    3D SANi-G0.5 M KHCO3−0.4−0.725.0CO96.0%35 h[91]
    A-Ni-NSG0.5 M KHCO3−0.2−0.823.5CO97.0%100 h[56]
    Ni-NG-acid0.5 M KHCO3−0.5−0.927.2CO97.0%10 h[81]
    Cu-N4−NG0.1 M KHCO3−0.4−1.05.0CO80.6%1 h[92]
    Zn-N-G0.5 M KHCO3−0.4−0.811.2CO91.0%15 h[126]
    MoC@NG-BW0.1 M KHCO3−0.2−0.943.5CH489.0%50 h[127]
    Mo@NGEmimBF4−0.3−1.4193.0HCOO8 h[128]
    Li-N, O/C0.5 M KHCO3−0.4−0.612.5CO98.8%10 h[129]
    Ag2−G0.5 M KHCO3−0.3−0.711.9CO93.4%36 h[130]
    Bi-C
    Bi-NC
    0.5 M KHCO3
    0.1 M KHCO3
    −0.5
    −0.3
    −1.0
    −0.5
    29.3
    16.5
    HCOO
    CO
    82.6%
    81.8%
    40 h
    [113]
    Single-atom Snδ+ on N-doped graphene0.25 M KHCO3−0.3−1.111.7HCOO75.1%200 h[82]
    Ni@N-C/rGO(4,4′-bipy)0.5 M KHCO3−0.3−1.020.0CO88.0%10 h[131]
    PO-5nm Co/SL-NG0.1 M NaHCO3−0.2−0.54.0CH3OH71.4%10 h[132]
    Ag-G-NCF0.1 M KHCO3−0.4−0.50.4C2H5OH79.1%10 h[133]
    ET-L0.1 M KHCO3−0.5−1.04.0HCOO84.1%7.5 h[98]
    GO-VB6−Cu0.1 M KHCO30.1−0.37.5C2H5OH56.3%24 h[78]
    Note: M: mol L−1
    下载: 导出CSV

    3  石墨烯基电催化材料在CO2RR中的电催化性能 (续)

    3.   The electrocatalytic performance of recent graphene-based catalysts in electrochemical CO2RR (Continued)

    CatalystsElectrolyteOnset
    potential
    (vs. RHE)/V
    Applied
    potential
    (vs. RHE)/V
    Current density/
    (mA·cm−2)
    Main productFaradaic
    efficiency
    StabilityReference
    Cu NCbs-rGO0.1 M KHCO3−0.5−0.93.2C2H5OH76.8%[99]
    Sn/rGO0.1 M KHCO3−0.5−0.89.9HCOO98.0%[134]
    SL-NG@Sn0.5 M KHCO3−0.5−1.021.3HCOO92.0%20 h[135]
    Bi/NGAhdrz0.5 M KHCO3−0.5−1.051.4HCOO96.4%24 h[107]
    Bi/rGO0.1 M KHCO3−0.7−0.82.0HCOOH98.0%12 h[76]
    Bi-rGO0.1 M KHCO3−0.6−0.94.0HCOO98.0%24 h[100]
    SbNS-G0.5 M NaHCO3−0.5−1.07.5HCOO88.5%12 h[101]
    In/N-dG1.0 M KOH−0.4−0.7700.0HCOOH100.0%14 h[136]
    PdTe/FLG0.1 M KHCO3−0.6−0.83.5CO90.0%5 h[77]
    Cu-In/PNGC0.5 M KHCO3−0.5−0.7136.4CO91.3%20 h[137]
    CuSn-NP/NG0.5 M KHCO3−0.5−1.09.0CO+HCOO93.0%15 h[138]
    Ag-Sn/rGO0.5 M NaHCO3−0.6−0.921.3HCOO88.3%6 h[139]
    CuSn-LIG0.5 M KHCO3−0.6−1.026.0HCOOH99.0%[114]
    CuNi@C/N-npG0.5 M KHCO3−0.3−0.838.0C2H5OH84.0%36 h[112]
    NiO/NLG0.1 M KHCO3−0.6−0.710.0CO87.5%12 h[140]
    R-ZnO/rGO0.5 M KHCO3−0.8−1.03.8CO94.3%21 h[141]
    SnO2/tert-GO0.1 M KHCO3−0.6−1.04.5HCOO84.4%12 h[142]
    Bi2O3/p-rGO0.1 M KHCO3−0.7−1.116.8HCOOH94.3%39 h[143]
    In2O3$ \supset $NC@GO0.5 M KHCO3−0.4−0.840.4HCOO91.2%10 h[144]
    NG-Co3O40.1 M KHCO3−0.2−0.310.5HCOOH83.0%8 h[145]
    rGO-Co3O40.5 M KHCO3−0.2−0.43.2C2H5OH
    C2H4
    45.9%
    28.8%
    9 h[146]
    CG electrodes1.0 M KOH−0.3−1.054.8CO93.2%8 h[147]
    Cu2O/Cu@C/NG0.1 M KHCO3−0.4−0.88.0HCOO82.1%30 h[148]
    Cu2O/NRGO0.1 M KHCO3−1.0−1.412.0C2H419.7%2.8 h[149]
    CuO/NG_AN0.1 M KHCO3−1.0−1.312.5C2H430.0%4.2 h[150]
    NG/Cu1.0 M KOH−0.2−1.5150.0C2+68.0%24 h[151]
    Cu/Cu2O@NG0.2 M KI−1.0−1.919.0C2~C356.0%1.25 h[152]
    CuZnx/NGN0.1 M KHCO3−0.4−0.84.0C2H5OH
    n-C3H7OH
    34.3%
    12.4%
    24 h[110]
    GN/ZnO/Cu2O0.5 M NaHCO3−0.2−0.30.8n-C3H7OH30.0%[153]
    CuS/N, S-rGO0.5 M KHCO3−0.3−0.64.5HCOO82.0%20 h[108]
    In2S3−rGO0.1 M KHCO3−0.4−1.210.9HCOO91.0%14 h[109]
    Ag2S/N-S-doped rGO0.1 M KHCO3−0.3−0.80.1CO87.4%40 h[154]
    rGO-PEI-MoSx0.5 M NaHCO3−0.3−0.75.0CO85.1%1.7 h[155]
    Fe-N-G/bC0.1 M KHCO3−0.4−0.77.5CO95.0%12 h[120]
    N-Fe3C/rGO NPs0.5 M KHCO3−0.2−0.30.5CO33.0%24 h[156]
    CsPbI3/rGO0.1 M KHCO3−1.1−1.512.7HCOO92.0%10.5 h[157]
    Ni-AlO(OH)3@rGO0.1 M KHCO3−0.2−0.95.1CO92.2%3 h[158]
    SnSe2−graphene0.1 M KHCO3−0.3−0.911.8HCOOH95.1%16 h[159]
    Note: M: mol L−1
    下载: 导出CSV
  • [1] Zhang X, Zhang Z, Li H, et al. Insight into heterogeneous electrocatalyst design understanding for the reduction of carbon dioxide [J]. Advanced Energy Materials, 2022, 12(39) : 2201461.
    [2] Xie H, Wang T, Liang J, et al. Cu-based nanocatalysts for electrochemical reduction of CO2[J]. Nano Today,2018,21:41-54. doi: 10.1016/j.nantod.2018.05.001
    [3] Tan H, Si W, Peng W, et al. Laser direct writing derived robust carbon nitride films with efficient photon-to-electron conversion for multifunctional photoelectrical applications[J]. Carbon Energy,2022,4(6):1228-1241. doi: 10.1002/cey2.225
    [4] Tian Y, Chen R, Liu X, et al. Fluorine-regulated carbon nanotubes decorated with Co single atoms for multi-site electrocatalysis toward two-electron oxygen reduction [J]. Ecomat, 2023, 5(5): e12336.
    [5] Jia C, Dastafkan K, Zhao C. Key factors for designing single-atom metal-nitrogen-carbon catalysts for electrochemical CO2 reduction [J]. Current Opinion in Electrochemistry, 2022, 31: 100854.
    [6] Saha P, Amanullah S, Dey A. Selectivity in electrochemical CO2 reduction[J]. Accounts of Chemical Research,2022,55(2):134-144. doi: 10.1021/acs.accounts.1c00678
    [7] Wang X, Hu Q, Li G, et al. Recent advances and perspectives of electrochemical CO2 reduction toward C2+ products on Cu-based catalysts [J]. Electrochemical Energy Reviews, 2022, 5(SUPPL 2): 28.
    [8] Liu X, Chen R, Peng W, et al. Multiatom activation of single-atom electrocatalysts via remote coordination for ultrahigh-rate two-electron oxygen reduction[J]. Journal of Energy Chemistry,2023,76:622-630. doi: 10.1016/j.jechem.2022.10.015
    [9] Tan H, Peng W, Zhang T, et al. Highly polymerized wine-red carbon nitride to enhance photoelectrochemical water splitting performance of hematite[J]. Journal of Physical Chemistry C,2021,125(24):13273-13282. doi: 10.1021/acs.jpcc.1c02342
    [10] Li M, Wang H, Luo W, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction [J]. Advanced Materials, 2020, 32(34): 2001848.
    [11] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design [J]. Science, 2017, 355(6321): eaad4998.
    [12] Tan H, Si W, Peng W, et al. Flexo-/piezoelectric polarization boosting exciton dissociation in curved two-dimensional carbon nitride photocatalyst[J]. Nano Letters,2023,23(22):10571-10578. doi: 10.1021/acs.nanolett.3c03466
    [13] Peng W, Liu J, Liu X, et al. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production[J]. Nature Communications,2023,14(1):4430-4430. doi: 10.1038/s41467-023-40118-y
    [14] Cui H, Guo Y, Guo L, et al. Heteroatom-doped carbon materials and their composites as electrocatalysts for CO2 reduction[J]. Journal of Materials Chemistry A,2018,6(39):18782-18793. doi: 10.1039/C8TA07430E
    [15] Zhang J, Cai W, Hu F X, et al. Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction[J]. Chemical Science,2021,12(20):6800-6819. doi: 10.1039/D1SC01375K
    [16] Qu J, Cao X, Gao L, et al. Electrochemical carbon dioxide reduction to ethylene: From mechanistic understanding to catalyst surface engineering [J]. Nano-Micro Letters, 2023, 15(1): 178.
    [17] Feng J, Ni J, Pan H. Synergistic carbon and hydrogen reactions in the electrochemical reduction of CO2 to liquid fuels[J]. Journal of Materials Chemistry A,2021,9(17):10546-10561. doi: 10.1039/D1TA00758K
    [18] Woldu A R, Huang Z, Zhao P, et al. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts [J]. Coordination Chemistry Reviews, 2022, 454: 214340.
    [19] Lee S M, Cheon W S, Lee M G, et al. Coordination environment in single-atom catalysts for high-performance electrocatalytic CO2 reduction [J]. Small Structures, 2023, 4(6): 2200236.
    [20] Sun B, Dai M, Cai S, et al. Challenges and strategies towards copper-based catalysts for enhanced electrochemical CO2 reduction to multi-carbon products [J]. Fuel, 2023, 332: 126114.
    [21] Li M, Idros M N, Wu Y, et al. The role of electrode wettability in electrochemical reduction of carbon dioxide[J]. Journal of Materials Chemistry A,2021,9(35):19369-19409. doi: 10.1039/D1TA03636J
    [22] Lonkar S P, Deshmukh Y S, Abdala A A. Recent advances in chemical modifications of graphene[J]. Nano Research,2015,8(4):1039-1074. doi: 10.1007/s12274-014-0622-9
    [23] Sattar T. Current review on synthesis, composites and multifunctional properties of graphene [J]. Topics in Current Chemistry, 2019, 377(2): 10.
    [24] Wang J, Jin X, Li C, et al. Graphene and graphene derivatives toughening polymers: Toward high toughness and strength[J]. Chemical Engineering Journal,2019,370:831-854. doi: 10.1016/j.cej.2019.03.229
    [25] Yan R, Wang K, Wang C, et al. A review of graphene-based catalysts for oxygen reduction reaction[J]. New Carbon Materials,2020,35(5):508-521.
    [26] Yu S, Guo B, Zeng T, et al. Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective [J]. Composites Part B-Engineering, 2022, 246: 110232.
    [27] Ma T, Fan Q, Li X, et al. Graphene-based materials for electrochemical CO2 reduction[J]. Journal of CO2 Utilization,2019,30:168-182. doi: 10.1016/j.jcou.2019.02.001
    [28] Hu H, Ou J Z, Xu X, et al. Graphene-assisted construction of electrocatalysts for carbon dioxide reduction [J]. Chemical Engineering Journal, 2021, 425: 130587.
    [29] Hasani A, Teklagne M A, Do H H, et al. Graphene-based catalysts for electrochemical carbon dioxide reduction[J]. Carbon Energy,2020,2(2):158-175. doi: 10.1002/cey2.41
    [30] Du Y, Meng X, Wang Z, et al. Graphene-based catalysts for CO2 electroreduction [J]. Acta Physico-Chimica Sinica, 2022, 38(2): 2101009.
    [31] Delgado S, Arevalo M D C, Pastor E, et al. Electrochemical reduction of carbon dioxide on graphene-based catalysts [J]. Molecules, 2021, 26(3): 572.
    [32] Rong Y W, Sang J Q, Che L, et al. Designing electrolytes for aqueous electrocatalytic CO2 reduction [J]. Acta Physico-Chimica Sinica, 2023, 39(5): 2212027.
    [33] Lai W C, Qiao Y, Zhang J W, et al. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction[J]. Energy & Environmental Science,2022,15(9):3603-3629.
    [34] Shao Q, Wang P T, Liu S H, et al. Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction[J]. Journal of Materials Chemistry A,2019,7(36):20478-20493. doi: 10.1039/C9TA07016H
    [35] Gao Z, Li J, Zhang Z, et al. Recent advances in carbon-based materials for electrochemical CO2 reduction reaction[J]. Chinese Chemical Letters,2022,33(5):2270-2280. doi: 10.1016/j.cclet.2021.09.037
    [36] Gao F Y, Wu Z Z, Gao M R. Electrochemical CO2 reduction on transition-metal chalcogenide catalysts: Recent advances and future perspectives[J]. Energy & Fuels,2021,35(16):12869-12883.
    [37] Tan X, Yu C, Ren Y, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction[J]. Energy & Environmental Science,2021,14(2):765-780.
    [38] Liu S, Yang H, Su X, et al. Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review[J]. Journal of Energy Chemistry,2019,36:95-105. doi: 10.1016/j.jechem.2019.06.013
    [39] Li H, Jiang K, Zou S Z, et al. Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies[J]. Chinese Journal of Catalysis,2022,43(11):2772-2791. doi: 10.1016/S1872-2067(22)64095-6
    [40] He J, Wu C, Li Y, et al. Design of pre-catalysts for heterogeneous CO2 electrochemical reduction[J]. Journal of Materials Chemistry A,2021,9(35):19508-19533. doi: 10.1039/D1TA03624F
    [41] Marcandalli G, Monteiro M C O, Goyal A, et al. Electrolyte effects on CO2 electrochemical reduction to CO[J]. Accounts of Chemical Research,2022,55(14):1900-1911. doi: 10.1021/acs.accounts.2c00080
    [42] Zhou R, Han N, Li Y. Recent advances in bismuth-based CO2 reduction electrocatalysts[J]. Journal of Electrochemistry,2019,25(4):445-454.
    [43] Wang G, Chen J, Ding Y, et al. Electrocatalysis for CO2 conversion: From fundamentals to value-added products[J]. Chemical Society Reviews,2021,50(8):4993-5061. doi: 10.1039/D0CS00071J
    [44] Kempler P A, Nielander A C. Reliable reporting of faradaic efficiencies for electrocatalysis research [J]. Nature Communications, 2023, 14(1): 1158.
    [45] Zhao Y, Zheng L, Jiang D, et al. Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions [J]. Small, 2021, 17(16): 2006590.
    [46] Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews,2019,48(21):5310-5349. doi: 10.1039/C9CS00163H
    [47] Feaster J T, Shi C, Cave E R, et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes[J]. ACS Catalysis,2017,7(7):4822-4827. doi: 10.1021/acscatal.7b00687
    [48] Song Y, Wang S, Chen W, et al. Enhanced ethanol production from CO2 electroreduction at micropores in nitrogen-doped mesoporous carbon[J]. Chemsuschem,2020,13(2):293-297. doi: 10.1002/cssc.201902833
    [49] Zhao K, Quan X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: Recent progress and remaining challenges[J]. ACS Catalysis,2021,11(4):2076-2097. doi: 10.1021/acscatal.0c04714
    [50] Chen T, Liu T, Shen X, et al. Synergistically electronic tuning of metalloid cdse nanorods for enhanced electrochemical CO2 reduction[J]. Science China-Materials,2021,64(12):2997-3006. doi: 10.1007/s40843-021-1696-x
    [51] Fu L, Wang R, Zhao C, et al. Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study [J]. Chemical Engineering Journal, 2021, 414: 128857.
    [52] Cheng T, Xiao H, Goggard W A, III. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(8):1795-1800.
    [53] Ledezma Y I, Gallent E P, Koper M T M, et al. Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction[J]. Catalysis Today,2016,262:90-94. doi: 10.1016/j.cattod.2015.09.029
    [54] Han N, Ding P, He L, et al. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate [J]. Advanced Energy Materials, 2020, 10(11): 1902338.
    [55] Xu H, Cheng D, Cao D, et al. A universal principle for a rational design of single-atom electrocatalysts[J]. Nature Catalysis,2018,1(5):339-348. doi: 10.1038/s41929-018-0063-z
    [56] Yang H B, Hung S, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction[J]. Nature Energy,2018,3(2):140-147. doi: 10.1038/s41560-017-0078-8
    [57] Tomboc G M, Choi S, Kwon T, et al. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs[J]. Advanced Materials,2020,32(17):1908398.
    [58] Sun Z, Ma T, Tao H, et al. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem,2017,3(4):560-587. doi: 10.1016/j.chempr.2017.09.009
    [59] Huang J E, Li F, Ozden A, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science,2021,372(6546):1074-1078. doi: 10.1126/science.abg6582
    [60] Nie X, Esopi M R, Janik M J, et al. Selectivity of CO2 reduction on copper electrodes: The role of the kinetics of elementary steps[J]. Angewandte Chemie-International Edition,2013,52(9):2459-2462. doi: 10.1002/anie.201208320
    [61] She X, Wang Y, Xu H, et al. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels [J]. Angewandte Chemie-International Edition, 2022, 61(49): e202211396.
    [62] Sandberg R B, Montoya J H, Chan K, et al. CO-CO coupling on Cu facets: Coverage, strain and field effects[J]. Surface Science,2016,654:56-62. doi: 10.1016/j.susc.2016.08.006
    [63] Wang G, Ma Y, Wang J, et al. Metal functionalization of two-dimensional nanomaterials for electrochemical carbon dioxide reduction[J]. Nanoscale,2023,15(14):6456-6475. doi: 10.1039/D3NR00484H
    [64] Ma Y, Wang J, Yu J, et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction[J]. Matter,2021,4(3):888-926. doi: 10.1016/j.matt.2021.01.007
    [65] Nitopi S, Bertheussen E, Scott S B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews,2019,119(12):7610-7672. doi: 10.1021/acs.chemrev.8b00705
    [66] Martin A, Escarpa A. Graphene: The cutting-edge interaction between chemistry and electrochemistry[J]. Trac-Trends in Analytical Chemistry,2014,56:13-26. doi: 10.1016/j.trac.2013.12.008
    [67] Liu F, Li P, An H, et al. Achievements and challenges of graphene chemical vapor deposition growth[J]. Advanced Functional Materials,2022,32(42):2203191.
    [68] Zheng S, Wu Z S, Wang S, et al. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors[J]. Energy Storage Materials,2017,6:70-97. doi: 10.1016/j.ensm.2016.10.003
    [69] Chen W, Xiao P, Chen H, et al. Polymeric graphene bulk materials with a 3D cross-linked monolithic graphene network[J]. Advanced Materials,2019,31(9):1802403.
    [70] Huang C, Li C, Shi G. Graphene based catalysts[J]. Energy & Environmental Science,2012,5(10):8848-8868.
    [71] Jamesh M I. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media[J]. Journal of Power Sources,2016,333:213-236. doi: 10.1016/j.jpowsour.2016.09.161
    [72] Shaari N, Kamarudin S K. Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: An overview[J]. Renewable & Sustainable Energy Reviews,2017,69:862-870.
    [73] Cheng Y, Veder J P, Thomsen L, et al. Electrochemically substituted metal phthalocyanines, e-MPc (M = Co, Ni), as highly active and selective catalysts for CO2 reduction[J]. Journal of Materials Chemistry A,2018,6(4):1370-1375. doi: 10.1039/C7TA09208C
    [74] Bai X F, Chen W, Wang B Y, et al. Recent progress on electrochemical reduction of carbon dioxide[J]. Acta Physico-Chimica Sinica,2017,33(12):2388-2403.
    [75] Li X, Chai G, Xu X, et al. Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites[J]. Carbon,2020,167:658-667. doi: 10.1016/j.carbon.2020.06.036
    [76] Duan Y, Liu K, Zhang Q, et al. Efficient CO2 reduction to HCOOH with high selectivity and energy efficiency over Bi/rGO catalyst[J]. Small Methods,2020,4(5):1900846.
    [77] Tao H, Sun X, Back S, et al. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO[J]. Chemical Science,2018,9(2):483-487. doi: 10.1039/C7SC03018E
    [78] Yuan J, Yang M, Zhi W, et al. Efficient electrochemical reduction of CO2 to ethanol on Cu nanoparticles decorated on N-doped graphene oxide catalysts[J]. Journal of CO2 Utilization,2019,33:452-460. doi: 10.1016/j.jcou.2019.07.014
    [79] Choi J, Wagner P, Jalili R, et al. A porphyrin/graphene framework: A highly efficient and robust electrocatalyst for carbon dioxide reduction[J]. Advanced Energy Materials,2018,8(26):1801280.
    [80] Mou K, Chen Z, Zhang X, et al. Highly efficient electroreduction of CO2 on nickel single-atom catalysts: Atom trapping and nitrogen anchoring[J]. Small,2019,15(49):1903668.
    [81] Wang H, Liu G, Chen C, et al. Single-Ni sites embedded in multilayer nitrogen-doped graphene derived from amino-functionalized MOF for highly selective CO2 electroreduction[J]. ACS Sustainable Chemistry & Engineering,2021,9(10):3792-3801.
    [82] Zu X, Li X, Liu W, et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Snδ+ sites[J]. Advanced Materials,2019,31(15):1808135.
    [83] Bi W, Li X, You R, et al. Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction [J]. Advanced Materials, 2018, 30(18): 1706617.
    [84] Liu S, Yang H, Huang X, et al. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction [J]. Advanced Functional Materials, 2018, 28(21): 1800499.
    [85] Zhao Y, Yuan Q, Fan M, et al. Fabricating pyridinic N-B sites in porous carbon as efficient metal-free electrocatalyst in conversion CO2 into CH4 [J]. Chinese Chemical Letters, 2023, 34(8): 108120.
    [86] Wang H, Chen Y, Hou X, et al. Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution[J]. Green Chemistry,2016,18(11):3250-3256. doi: 10.1039/C6GC00410E
    [87] Pan F, Li B, Sarnello E, et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction[J]. ACS Catalysis,2020,10(19):10803-10811. doi: 10.1021/acscatal.0c02499
    [88] Su P, Iwase K, Nakanishi S, et al. Nickel-nitrogen-modified graphene: An efficient electrocatalyst for the reduction of carbon dioxide to carbon monoxide[J]. Small,2016,12(44):6083-6089. doi: 10.1002/smll.201602158
    [89] Zhang H, Li J, Xi S, et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction[J]. Angewandte Chemie-International Edition,2019,58(42):14871-14876. doi: 10.1002/anie.201906079
    [90] Hu C, Mu Y, Bai S, et al. Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction[J]. Carbon,2019,153:609-616. doi: 10.1016/j.carbon.2019.07.071
    [91] Zhai P, Gu X, Wei Y, et al. Enhanced mass transfer in three-dimensional single-atom nickel catalyst with open-pore structure for highly efficient CO2 electrolysis[J]. Journal of Energy Chemistry,2021,62:43-50. doi: 10.1016/j.jechem.2021.03.011
    [92] Xu C, Zhi X, Vasileff A, et al. Highly selective two-electron electrocatalytic CO2 reduction on single-atom Cu catalysts [J]. Small Structures, 2021, 2(1): 2000058.
    [93] Yuan J, Zhi W, Liu L, et al. Electrochemical reduction of CO2 at metal-free N-functionalized graphene oxide electrodes[J]. Electrochimica Acta,2018,282:694-701. doi: 10.1016/j.electacta.2018.06.107
    [94] Hu M K, Zhou S, Ma D D, et al. New insight into heterointerfacial effect for heterogenized metallomacrocycle catalysts in executing electrocatalytic CO2 reduction [J]. Applied Catalysis B-Environmental, 2022, 310: 121324.
    [95] Li M, Yan C, Ramachandran R, et al. Non-peripheral octamethyl-substituted cobalt phthalocyanine nanorods supported on N-doped reduced graphene oxide achieve efficient electrocatalytic CO2 reduction to CO [J]. Chemical Engineering Journal, 2022, 430: 133050.
    [96] Zhang H, Wang H, Jia S, et al. CoN4 active sites in a graphene matrix for the highly efficient electrocatalysis of CO2 reduction[J]. New Carbon Materials,2022,37(4):732-733.
    [97] Bochlin Y, Korin E, Bettelheim A. Different pathways for CO2 electrocatalytic reduction by confined CoTMPyP in electrodeposited reduced graphene oxide[J]. ACS Applied Energy Materials,2019,2(12):8434-8440. doi: 10.1021/acsaem.9b01279
    [98] Ma Z, Tsounis C, Toe C Y, et al. Reconstructing Cu nanoparticle supported on vertical graphene surfaces via electrochemical treatment to tune the selectivity of CO2 reduction toward valuable products[J]. ACS Catalysis,2022,12(9):4792-4805. doi: 10.1021/acscatal.1c05431
    [99] Mardones Herrera E, Castro C C, Nanda K K, et al. Reduced graphene oxide overlayer on copper nanocube electrodes steers the selectivity towards ethanol in electrochemical reduction of carbon dioxide [J]. Chemelectrochem, 2022, 9(10): e202200259.
    [100] Jiang X, Wang Q, Xiao X, et al. Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance [J]. Electrochimica Acta, 2020, 357: 136840.
    [101] Li F, Xue M, Li J, et al. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material[J]. Angewandte Chemie-International Edition,2017,56(46):14718-14722. doi: 10.1002/anie.201710038
    [102] Wang J, Huang X, Xi S, et al. Linkage effect in the heterogenization of cobalt complexes by doped graphene for electrocatalytic CO2 reduction[J]. Angewandte Chemie-International Edition,2019,58(38):13532-13539. doi: 10.1002/anie.201906475
    [103] Gu H, Shi G, Zhong L, et al. A two-dimensional van der waals heterostructure with isolated electron-deficient cobalt sites toward high-efficiency CO2 electroreduction[J]. Journal of the American Chemical Society,2022,144(47):21502-21511. doi: 10.1021/jacs.2c07601
    [104] Wu J, Ma S, Sun J, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates [J]. Nature Communications, 2016, 7: 13869.
    [105] Zhang T, Li W, Huang K, et al. Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion [J]. Nature Communications, 2021, 12(1): 5265.
    [106] Yadav R M, Li Z, Zhang T, et al. Amine-functionalized carbon nanodot electrocatalysts converting carbon dioxide to methane [J]. Advanced Materials, 2022, 34(2): 2105690.
    [107] Jing X, Zhu Z, Chen L, et al. Boosting CO2 electroreduction on bismuth nanoplates with a three-dimensional nitrogen-doped graphene aerogel matrix[J]. ACS Applied Materials & Interfaces,2023,15(16):20317-20324.
    [108] Wu Z, Yu J, Wu K, et al. Ultrafine CuS anchored on nitrogen and sulfur co-doped graphene for selective CO2 electroreduction to formate [J]. Applied Surface Science, 2022, 575: 151796.
    [109] Ning H, Fei X, Tan Z, et al. In situ-fabricated In2S3-reduced graphene oxide nanosheet composites for enhanced CO2 electroreduction to formate[J]. ACS Applied Nano Materials,2022,5(2):2335-2342. doi: 10.1021/acsanm.1c04016
    [110] Dongare S, Singh N, Bhunia H. Oxide-derived Cu-Zn nanoparticles supported on N-doped graphene for electrochemical reduction of CO2 to ethanol [J]. Applied Surface Science, 2021, 556: 149790.
    [111] Wu J, Liu M, Sharma P P, et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam[J]. Nano Letters,2016,16(1):466-470. doi: 10.1021/acs.nanolett.5b04123
    [112] Zhang K, Wang J, Zhang W, et al. Regulated surface electronic states of CuNi nanoparticles through metal-support interaction for enhanced electrocatalytic CO2 reduction to ethanol [J]. Small, 2023, 19(32): 2300281.
    [113] Zhu M, Jiang H, Zhang B, et al. Nanosecond laser confined bismuth moiety with tunable structures on graphene for carbon dioxide reduction[J]. ACS Nano,2023,17(9):8705-8716. doi: 10.1021/acsnano.3c01897
    [114] Ren M, Zheng H, Lei J, et al. CO2 to formic acid using Cu-Sn on laser-induced graphene[J]. ACS Applied Materials & Interfaces,2020,12(37):41223-41229.
    [115] Cheng Y, Zhao S, Li H, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2[J]. Applied Catalysis B-Environmental,2019,243:294-303. doi: 10.1016/j.apcatb.2018.10.046
    [116] Yang F, Liang C, Yu H, et al. Phosphorus-doped graphene aerogel as self-supported electrocatalyst for CO2-to-ethanol conversion [J]. Advanced Science, 2022, 9(25): 2202006.
    [117] Bochlin Y, Ezuz L, Kadosh Y, et al. Enhancement of electrocatalytic CO2 reduction to methane by CoTMPyP when hosted in a 3D covalent graphene framework[J]. ACS Applied Energy Materials,2021,4(9):10033-10041. doi: 10.1021/acsaem.1c01978
    [118] Kong X, Liu G, Tiang S, et al. Coupling cobalt phthalocyanine molecules on 3D nitrogen-doped vertical graphene arrays for highly efficient and robust CO2 electroreduction [J]. Small, 2022, 18(51): 202204615.
    [119] Liang F, Zhang J, Hu Z, et al. Intrinsic defect-rich graphene coupled cobalt phthalocyanine for robust electrochemical reduction of carbon dioxide[J]. ACS Applied Materials & Interfaces,2021,13(21):25523-25532.
    [120] Zhang H, Wang J, Zhao Z, et al. The synthesis of atomic Fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst[J]. Green Chemistry,2018,20(15):3521-3529. doi: 10.1039/C8GC01466C
    [121] Zhang C, Yang S, Wu J, et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene [J]. Advanced Energy Materials, 2018, 8(19): 1703487.
    [122] Jia C, Ching K, Kumar P V, et al. Vitamin B12 on graphene for highly efficient CO2 electroreduction[J]. ACS Applied Materials & Interfaces,2020,12(37):41288-41293.
    [123] Wang Z, Han Y, Li B, et al. Regulation of electrocatalytic behavior by axial oxygen enhances the catalytic activity of CoN4 sites for CO2 reduction [J]. Small, 2023, 19(34): 202301797.
    [124] Jeong H, Balamurugan M, Choutipalli V S K, et al. Tris(2-benzimidazolylmethyl)amine-directed synthesis of single-atom nickel catalysts for electrochemical CO production from CO2[J]. Chemistry-a European Journal,2018,24(69):18444-18454. doi: 10.1002/chem.201803615
    [125] Shao T, Duan D, Liu S, et al. Tuning the local electronic structure of a single-site Ni catalyst by co-doping a 3D graphene framework with B/N atoms toward enhanced CO2 electroreduction[J]. Nanoscale,2022,14(3):833-841. doi: 10.1039/D1NR06545A
    [126] Chen Z, Mou K, Yao S, et al. Zinc-coordinated nitrogen-codoped graphene as an efficient catalyst for selective electrochemical reduction of CO2 to CO[J]. Chemsuschem,2018,11(17):2944-2952. doi: 10.1002/cssc.201800925
    [127] Han L, Liu X, He J, et al. Modification of the coordination environment of active sites on moc for high-efficiency CH4 production [J]. Advanced Energy Materials, 2021, 11(24): 2100044.
    [128] Huang P, Cheng M, Zhang H, et al. Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene[J]. Nano Energy,2019,61:428-434. doi: 10.1016/j.nanoen.2019.05.003
    [129] Huang H, Chen S, Jiang P, et al. Main-group s-block element lithium atoms within carbon frameworks as high-active sites for electrocatalytic reduction reactions [J]. Advanced Functional Materials, 2023, 33(30): 202300475.
    [130] Li Y, Chen C, Cao R, et al. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO [J]. Applied Catalysis B-Environmental, 2020, 268: 118747.
    [131] Wang F, Miao Z, Mu J, et al. A Ni nanoparticles encapsulated in N-doped carbon catalyst for efficient electroreduction CO2: Identification of active sites for adsorption and activation of CO2 molecules [J]. Chemical Engineering Journal, 2022, 428: 131323.
    [132] Huang J, Guo X, Yue G, et al. Boosting CH3OH production in electrocatalytic CO2 reduction over partially oxidized 5 nm cobalt nanoparticles dispersed on single-layer nitrogen-doped graphene[J]. ACS Applied Materials & Interfaces,2018,10(51):44403-44414.
    [133] Lv K, Fan Y, Zhu Y, et al. Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol[J]. Journal of Materials Chemistry A,2018,6(12):5025-5031. doi: 10.1039/C7TA10802H
    [134] Tsujiguchi T, Kawabe Y, Jeong S, et al. Acceleration of electrochemical CO2 reduction to formate at the Sn/reduced graphene oxide interface[J]. ACS Catalysis,2021,11(6):3310-3318. doi: 10.1021/acscatal.0c04887
    [135] Huang J, Guo X, Wei Y, et al. A renewable, flexible and robust single layer nitrogen-doped graphene coating Sn foil for boosting formate production from electrocatalytic CO2 reduction[J]. Journal of CO2 Utilization,2019,33:166-170. doi: 10.1016/j.jcou.2019.05.026
    [136] Bi J, Li P, Liu J, et al. High-rate CO2 electrolysis to formic acid over a wide potential window: An electrocatalyst comprised of indium nanoparticles on chitosan-derived graphene [J]. Angewandte Chemie-International Edition, 2023, 62(36): e202307612.
    [137] Zhang X, Zhu Y, Liu Z, et al. Perforated nitrogen-rich graphene-like carbon nanolayers supported Cu-In catalyst for boosting CO2 electroreduction to CO[J]. Journal of Energy Chemistry,2022,75:383-390. doi: 10.1016/j.jechem.2022.09.003
    [138] Xiong W, Yang J, Shuai L, et al. CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction[J]. Chemelectrochem,2019,6(24):5951-5957. doi: 10.1002/celc.201901381
    [139] Zhang X, Li F, Zhang Y, et al. Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction[J]. Journal of Materials Chemistry A,2018,6(17):7851-7858. doi: 10.1039/C8TA02429D
    [140] Liu W, Zhao X, Pang L, et al. Promoting the activity and selectivity of Ni sites via chemical coordination with pyridinic nitrogen for CO2-to-CO electrochemical catalysis[J]. International Journal of Hydrogen Energy,2021,46(50):25448-25456. doi: 10.1016/j.ijhydene.2021.05.080
    [141] Dang Le Tri N, Lee C W, Na J, et al. Mass transport control by surface graphene oxide for selective CO production from electrochemical CO2 reduction[J]. ACS Catalysis,2020,10(5):3222-3231. doi: 10.1021/acscatal.9b05096
    [142] Yang Z, Yang C, Han J, et al. Boosting electrochemical CO2 reduction to formate using SnO2/graphene oxide with amide linkages[J]. Journal of Materials Chemistry A,2021,9(35):19681-19686. doi: 10.1039/D1TA02780H
    [143] Kou X, Zhang Y, Niu D, et al. Polyethylene oxide-engineered graphene with rich mesopores anchoring Bi2O3 nanoparticles for boosting CO2 electroreduction to formate [J]. Electrochimica Acta, 2022, 433: 141256.
    [144] Wang Y, Ding J, Zhao J, et al. Selective electrocatalytic reduction of CO2 to formate via carbon-shell-encapsulated In2O3 nanoparticles/graphene nanohybrids[J]. Journal of Materials Science & Technology,2022,121:220-226.
    [145] Sekar P, Calvillol L, Tubaro C, et al. Cobalt spinel nanocubes on N-doped graphene: A synergistic hybrid electrocatalyst for the highly selective reduction of carbon dioxide to formic acid[J]. ACS Catalysis,2017,7(11):7695-7703. doi: 10.1021/acscatal.7b02166
    [146] Saha S, Maitra S, Chattopadhyaya M, et al. Unveiling the electrocatalytic activity of crystal facet-tailored cobalt oxide-rGO heterostructure toward selective reduction of CO2 to ethanol[J]. ACS Applied Nano Materials,2022,5(8):10369-10382. doi: 10.1021/acsanm.2c01703
    [147] Wang Y, Lei H, Lu S, et al. Cu2O nano-flowers/graphene enabled scaffolding structure catalyst layer for enhanced CO2 electrochemical reduction [J]. Applied Catalysis B-Environmental, 2022, 305: 121022.
    [148] Li D, Liu T, Huang L, et al. Selective CO2-to-formate electrochemical conversion with core-shell structured Cu2O/Cu@C composites immobilized on nitrogen-doped graphene sheets[J]. Journal of Materials Chemistry A,2020,8(35):18302-18309. doi: 10.1039/D0TA05620K
    [149] Ning H, Mao Q, Wang W, et al. N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4[J]. Journal of Alloys and Compounds,2019,785:7-12. doi: 10.1016/j.jallcom.2019.01.142
    [150] Tan Z, Peng T, Tan X, et al. Controllable synthesis of leaf-like CuO nanosheets for selective CO2 electroreduction to ethylene[J]. Chemelectrochem,2020,7(9):2020-2025. doi: 10.1002/celc.202000235
    [151] Wang Y, Cheng L, Ge W, et al. Effect of charge on carbon support on the catalytic activity of Cu2O toward CO2 reduction to C2 products[J]. ACS Applied Materials & Interfaces,2023,15(19):23306-23315.
    [152] Zhi W, Liu Y, Shan S, et al. Efficient electroreduction of CO2 to C2-C3 products on Cu/Cu2O@N-doped graphene [J]. Journal of CO2 Utilization, 2021, 50: 101594.
    [153] Geioushy R A, Khaled M M, Alhooshani K, et al. Graphene/ZnO/Cu2O electrocatalyst for selective conversion of CO2 into n-propanol[J]. Electrochimica Acta,2017,245:448-454. doi: 10.1016/j.electacta.2017.05.171
    [154] Zeng L, Shi J, Luo J, et al. Silver sulfide anchored on reduced graphene oxide as a high-performance catalyst for CO2 electroreduction[J]. Journal of Power Sources,2018,398:83-90. doi: 10.1016/j.jpowsour.2018.07.049
    [155] Li F, Zhao S, Chen L, et al. Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide[J]. Energy & Environmental Science,2016,9(1):216-223.
    [156] Yue T, Huang H, Chang Y, et al. Controlled assembly of nitrogen-doped iron carbide nanoparticles on reduced graphene oxide for electrochemical reduction of carbon dioxide to syngas[J]. Journal of Colloid and Interface Science,2021,601:877-885. doi: 10.1016/j.jcis.2021.05.164
    [157] Hoang M T, Han C, Ma Z, et al. Efficient CO2 reduction to formate on CsPbI3 nanocrystals wrapped with reduced graphene oxide [J]. Nano-Micro Letters, 2023, 15(1): 161.
    [158] Liu E, Liu T, Ma X, et al. The electrocatalytic performance of Ni-AlO(OH)3@rGO for the reduction of CO2 to CO[J]. New Journal of Chemistry,2022,46(25):12023-12033. doi: 10.1039/D2NJ01025A
    [159] Shao S, Wen T, Wang Z, et al. Fabrication of SnSe2-graphene nanosheets for highly effectively electrocatalytic reduction of CO2 [J]. Electrochimica Acta, 2022, 434: 141331.
    [160] Zheng X T, Aanathanarayanan A, Luo K Q, et al. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications[J]. Small,2015,11(14):1620-1636. doi: 10.1002/smll.201402648
    [161] Wang X W, Sun G Z, Li N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy[J]. Chemical Society Reviews,2016,45(8):2239-2262. doi: 10.1039/C5CS00811E
    [162] Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: From chemistry and physics to applications [J]. Advanced Materials, 2019, 31(21): 1808283.
    [163] Ma R, Wang K, Li C, et al. N-doped graphene for electrocatalytic O2 and CO2 reduction[J]. Nanoscale Advances,2022,4(20):4197-4209. doi: 10.1039/D2NA00348A
    [164] Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry,2011,3(8):634-641. doi: 10.1038/nchem.1095
    [165] Cheng N, Zhang L, Doyle Davis K, et al. Single-atom catalysts: From design to application[J]. Electrochemical Energy Reviews,2019,2(4):539-573. doi: 10.1007/s41918-019-00050-6
    [166] Gao D, Liu T, Wang G, et al. Structure sensitivity in single-atom catalysis toward CO2 electroreduction[J]. ACS Energy Letters,2021,6(2):713-727. doi: 10.1021/acsenergylett.0c02665
    [167] Vijay S, Gauthier J A, Heenen H H, et al. Dipole-field interactions determine the CO2 reduction activity of 2D Fe-N-C single-atom catalysts[J]. ACS Catalysis,2020,10(14):7826-7835. doi: 10.1021/acscatal.0c01375
    [168] Pan M, Li J, Zhang X, et al. Axially coordinated Co-N4 sites for the electroreduction of nitrobenzene[J]. Journal of Materials Chemistry A,2023,11(10):5095-5103. doi: 10.1039/D2TA07751E
    [169] Pan F, Yang Y. Designing CO2 reduction electrode materials by morphology and interface engineering[J]. Energy & Environmental Science,2020,13(8):2275-2309.
    [170] Mukherjee A, Abdinejad M, Mahapatra S S, et al. Metal sulfide-based nanomaterials for electrochemical CO2 reduction[J]. Journal of Materials Chemistry A,2023,11(17):9300-9332. doi: 10.1039/D2TA08209H
    [171] Peng L, Zhang Y, He R, et al. Research advances in electrocatalysts, electrolytes, reactors and membranes for the electrocatalytic carbon dioxide reduction reaction [J]. Acta Physico-Chimica Sinica, 2023, 39(12): 2302037.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  46
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-03
  • 录用日期:  2024-01-05
  • 修回日期:  2024-01-04
  • 网络出版日期:  2024-01-10
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回