留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N, S co-doped coal-based hard carbon prepared by two-step carbonization and a molten salt template method for sodium storage

NIU Hui-zhu WANG Hai-hua SUN Li-yu YANG Chen-rong WANG Yu CAO Rui YANG Cun-guo WANG Jie SHU Ke-wei

牛慧祝, 王海花, 孙立宇, 杨晨榕, 王雨, 曹瑞, 杨存国, 王洁, 舒珂维. 采用两步炭化法和熔盐模板法制备N、S 共掺杂煤基硬炭及共储钠性能. 新型炭材料(中英文), 2024, 39(2): 297-307. doi: 10.1016/S1872-5805(24)60842-5
引用本文: 牛慧祝, 王海花, 孙立宇, 杨晨榕, 王雨, 曹瑞, 杨存国, 王洁, 舒珂维. 采用两步炭化法和熔盐模板法制备N、S 共掺杂煤基硬炭及共储钠性能. 新型炭材料(中英文), 2024, 39(2): 297-307. doi: 10.1016/S1872-5805(24)60842-5
NIU Hui-zhu, WANG Hai-hua, SUN Li-yu, YANG Chen-rong, WANG Yu, CAO Rui, YANG Cun-guo, WANG Jie, SHU Ke-wei. N, S co-doped coal-based hard carbon prepared by two-step carbonization and a molten salt template method for sodium storage. New Carbon Mater., 2024, 39(2): 297-307. doi: 10.1016/S1872-5805(24)60842-5
Citation: NIU Hui-zhu, WANG Hai-hua, SUN Li-yu, YANG Chen-rong, WANG Yu, CAO Rui, YANG Cun-guo, WANG Jie, SHU Ke-wei. N, S co-doped coal-based hard carbon prepared by two-step carbonization and a molten salt template method for sodium storage. New Carbon Mater., 2024, 39(2): 297-307. doi: 10.1016/S1872-5805(24)60842-5

采用两步炭化法和熔盐模板法制备N、S 共掺杂煤基硬炭及共储钠性能

doi: 10.1016/S1872-5805(24)60842-5
基金项目: 国家自然科学基金(21978164、22078189、22105120);陕西省杰出青年科学基金(2021JC-046);陕西省高层次人才专项支持计划;陕西省创新支持计划(2021JZY-001);陕西省重点研发计划项目(20120GY-243);陕西省教育厅专项科研基金(20JK0535)
详细信息
    通讯作者:

    王海花,教授. E-mail:whh@sust.edu.cn

    舒珂维,副教授. E-mail:shukw@sust.edu.cn

  • 中图分类号: TQ127.1+1

N, S co-doped coal-based hard carbon prepared by two-step carbonization and a molten salt template method for sodium storage

Funds: The authors express sincere thanks to the National Natural Science Foundation of China (21978164, 22078189 and 22105120), Outstanding Youth Science Fund of Shaanxi Province (2021JC-046), Special Support Program for high level talents of Shaanxi Province, Innovation Support Program of Shaanxi Province (2021JZY-001), Key Research and Development Program of Shaanxi Province (2020GY-243) and Special Research Fund of Education Department of Shaanxi (20JK0535)
More Information
  • 摘要: 硬炭因资源丰富、结构稳定及安全性高等优势,已成为钠离子电池常用阳极材料。其中,煤基衍生硬炭受到了广泛的关注。本工作以长焰煤为碳源,硫脲为氮硫源,NaCl为模板,通过两步炭化工艺和杂原子掺杂相结合的方法合成了N和S共掺杂的煤基硬炭(NSPC1200)。两步炭化过程在调节碳微晶结构和扩大层间距方面发挥了重要的作用。N和S的共掺杂调节了炭材料的电子结构,赋予其更多的活性位点;此外,引入NaCl作为模板有助于孔结构的构建,有利于电极和电解质之间的接触,从而实现Na+和电子的有效传输。在协同作用下,样品NSPC1200表现出优异的储钠能力,在20 mA g−1电流密度下呈现314.2 mAh g−1的可逆容量。即使在100 mA g−1下循环200次,仍保持224.4 mAh g−1的比容量。这项工作成功实现了策略性调整煤基炭材料微观结构的目标,最终获得了具有优异的电化学性能的硬炭阳极。
  • FIG. 3065.  FIG. 3065.

    FIG. 3065..  FIG. 3065.

    Figure  1.  (a) Synthetic schematic diagram of PC1200 and NSPC1200. (b,c) SEM images of PC1200. (e,f) SEM images of NSPC1200. (d,g) HRTEM and SAED images of PC1200 and NSPC1200

    Figure  2.  (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption/desorption isotherm curves and (d) the corresponding pore-size distributions of PC1200 and NSPC1200

    Figure  3.  (a) XPS survey spectra of NSPC1200. (b,c,d) The high-resolution C 1s, N 1s and S 2p spectra of NSPC1200

    Figure  4.  (a,b) Charge/discharge curves of PC1200 and NSPC1200; (c) Rate performance of PC1200 and NSPC1200; (d) Cycling performance of PC1200 and NSPC1200 at a current density of 100 mA g−1

    Figure  5.  (a) Specific capacity of PC1200 and NSPC1200 from the different plateau (< 0.1 V) and slope (> 0.1V) contributions (discharge capacity at the second cycle). (b) Nyquist plots of PC1200 and NSPC1200. (c,d) CV curves of PC1200 and NSPC1200

    Figure  6.  (a) The CV curves at various scan rates (0.1–1.0 mV s−1). (b) The relationship between the peak current and scan rate in logarithmic format. (c) The capacitive contribution to charge storage at a scan rate of 0.2 mV s−1. (d) The contribution ratio of the capacitive and intercalated charge to capacity at different scan rates

  • [1] Zhu X, Jiang Q Y, Wang T S, et al. Capacitive sodium-ion storage based on double-layered mesoporous graphene with high capacity and charging/discharging rate[J]. ChemSusChem,2019,12:4323-4331. doi: 10.1002/cssc.201900798
    [2] Zhang F, Yao Y G, Wan J Y, et al. High temperature carbonized grass as a high performance sodium ion battery anode[J]. ACS Applied Materials & Interfaces,2017,9:391-397.
    [3] Liu Y, Dai H D, An Y K, et al. A facile and scalable synthesis of sulfur, selenium and nitrogen co-doped hard carbon anode for high performance Na- and K-ion batteries[J]. Journal of Materials Chemistry A,2020,8:14993-15001. doi: 10.1039/D0TA04513F
    [4] Dai Z S, Wang J H, Zhao H L, et al. Surface coupling between mechanical and electric fields empowering Ni-rich cathodes with superior cyclabilities for lithium-ion batteries[J]. Advanced Science,2022,9:2200622. doi: 10.1002/advs.202200622
    [5] Xu J X, Liu Y W, Xu C W, et al. Aqueous non-metallic ion batteries: Materials, mechanisms and design strategies[J]. Coordination Chemistry Reviews,2023,474:214867. doi: 10.1016/j.ccr.2022.214867
    [6] Qian J F, Wu X Y, Cao Y L, et al. High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J]. Angewandte Communications,2013,52:4633-4636.
    [7] Gandi S, Mekprasart W, Pecharapa W, et al. Na–Ge glass anode network mixed with bismuth oxide nanocrystallites: A high capacity anode material for use in advanced sodium-ion battery design[J]. Materials Chemistry and Physics,2020,242:122568. doi: 10.1016/j.matchemphys.2019.122568
    [8] Luo X Y, Tan H F, Ma T, et al. Nitrogen doped porous carbon coated antimony as high performance anode material for sodium-ion batteries[J]. Nanotechnology,2021,32:315401. doi: 10.1088/1361-6528/abf778
    [9] Kim D Y, Kim D H, Kim S H, et al. Nano hardcarbon anodes for sodium-ion batteries[J]. Nanomaterials,2019,9:793. doi: 10.3390/nano9050793
    [10] Yan J, Li H M, Wang K L, et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode[J]. Advanced Energy Materials,2020,11:2003911.
    [11] Hoang V C, Hassan M, Gomes V G. Coal derived carbon nanomaterials-recent advances in synthesis and applications[J]. Applied Materials Today,2018,12:342-358. doi: 10.1016/j.apmt.2018.06.007
    [12] Wang J, Cui Y L, Gu Y, et al. Coal-based modified carbon for high performance sodium-ion battery[J]. Solid State Ionics,2021,368:115701. doi: 10.1016/j.ssi.2021.115701
    [13] Gao J T, Wang X C, Lu X Q, et al. Coal-based hierarchically porous carbon nanofibers as high-performance anode for Sodium-ion batteries[J]. ChemElectroChem,2022,9:e202200496. doi: 10.1002/celc.202200496
    [14] Tang Y H, Chen J J, Mao Z Y, et al. Highly N-doped carbon with low graphitic-N content as anode material for enhanced initial coulombic efficiency of lithium-ion batteries[J]. Carbon Energy, 2022, 5.
    [15] Wei F, He X J, Ma L B, et al. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors[J]. Nano-Micro Letters,2020,12:82. doi: 10.1007/s40820-020-00416-2
    [16] Zhao G Y, Yu D F, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy,2020,67:104219. doi: 10.1016/j.nanoen.2019.104219
    [17] Xue X X, Weng Y J, Jiang Z D, et al. Naturally nitrogen-doped porous carbon derived from waste crab shell as anode material for high performance sodium-ion battery[J]. Journal of Analytical and Applied Pyrolysis,2021,157:105215. doi: 10.1016/j.jaap.2021.105215
    [18] Ou J K, Yang L, Zhang Z. Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for lithium/sodium ion batteries[J]. Powder Technology,2019,344:89-95. doi: 10.1016/j.powtec.2018.11.100
    [19] Chen H, Sun N, Wang Y X, et al. One stone two birds: Pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials,2023,56:532-541. doi: 10.1016/j.ensm.2023.01.042
    [20] Cheng G Z, Zhang W Z, Wang W, et al. Sulfur and nitrogen codoped cyanoethyl cellulose-derived carbon with superior gravimetric and volumetric capacity for potassium ion storage[J]. Carbon Energy,2022,4:986-1001. doi: 10.1002/cey2.233
    [21] Li Y M, Hu YS, Qi X G, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications[J]. Energy Storage Materials,2016,5:191-197. doi: 10.1016/j.ensm.2016.07.006
    [22] Kang M M, Zhao H Q, Ye J Q, et al. Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites[J]. Journal of Materials Chemistry A,2019,7:7565-7572. doi: 10.1039/C8TA12062E
    [23] Qie L, Chen W M, Xiong X Q, et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced Science,2015,2:1500195.
    [24] Xiao N, Wei Y B, Li H Q, et al. Boosting the sodium storage performance of coal-based carbon materials through structure modification by solvent extraction[J]. Carbon,2020,162:431-437. doi: 10.1016/j.carbon.2020.02.015
    [25] Han L, Li Z M, Yang F, et al. Enhancing capacitive storage of carbonaceous anode by surface doping and structural modulation for high-performance sodium-ion battery[J]. Powder Technology,2021,382:541-549. doi: 10.1016/j.powtec.2021.01.020
    [26] Li M Y, Tsai W Y, Thapaliya B P, et al. Modified coal char materials with high rate performance for battery applications[J]. Carbon,2021,172:414-421. doi: 10.1016/j.carbon.2020.10.035
    [27] Huang S F, Li Z P, Wang B, et al. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Advanced Functional Materials,2018,28:1706294. doi: 10.1002/adfm.201706294
    [28] Li N, Wang Y, Liu L S, et al. "Self-doping" defect engineering in SnP3@gamma-irradiated hard carbon anode for rechargeable sodium storage[J]. Journal of Colloid and Interface Science,2021,592:279-290. doi: 10.1016/j.jcis.2021.02.060
    [29] Pei Z X, Meng Q Q, Wei L, et al. Toward efficient and high rate sodium-ion storage: A new insight fromdopant-defect interplay in textured carbon anode materials[J]. Energy Storage Materials,2020,28:55-63. doi: 10.1016/j.ensm.2020.02.033
    [30] Kim C H. J, Zhao D D, Lee G, et al. Strong, machinable carbon aerogels for high performance supercapacitors[J]. Advanced Functional Materials,2016,26:4976-4983. doi: 10.1002/adfm.201601010
    [31] Song M X, Yi Z L, Xu R, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials,2022,51:620-629. doi: 10.1016/j.ensm.2022.07.005
    [32] Li X, Hu X C, Zhou Li, et al. A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries[J]. Journal of Materials Chemistry A,2019,7:11976-11984. doi: 10.1039/C9TA01615E
    [33] Hu X D, Sun X H, Yoo S J, et al. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries[J]. Nano Energy,2019,56:828-839. doi: 10.1016/j.nanoen.2018.11.081
    [34] Li Y Q, Ni B, Li X D, et al. High-performance Na-ion storage of S-doped porous carbon derived from conjugated microporous polymers[J]. Nano-Micro Letters,2019,11:1-13. doi: 10.1007/s40820-018-0235-z
    [35] Zhang J H, Zhang D L, Li K, et al. N, O and S co-doped hierarchical porous carbon derived from a series of samara for lithium and sodium storage: Insights into surface capacitance and inner diffusion[J]. Journal of Colloid and Interface Science,2021,598:250-259. doi: 10.1016/j.jcis.2021.04.047
    [36] Li W, Zhou M, Li H M, et al. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy & Environmental Science,2015,8:2916-2921.
    [37] Yang J Q, Zhou X L, Wu D H, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials,2017,29:1604108. doi: 10.1002/adma.201604108
    [38] Chen D Q, Zhang W, Luo K Y, et al. Hard carbon for sodium storage: Mechanism and optimization strategies toward commercialization[J]. Energy & Environmental Science,2021,14:2244-2262.
    [39] Li Q, Zhu Y Y, Zhao P Y, et al. Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode[J]. Carbon,2018,129:85-94. doi: 10.1016/j.carbon.2017.12.008
    [40] Wu L M, Buchholz D, Vaalma C, et al. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries[J]. ChemElectroChem,2016,3:292-298. doi: 10.1002/celc.201500437
    [41] Chen H, Sun N, Zhu Q Z, et al. Microcrystalline hybridization enhanced coal-based carbon anode for advanced sodium-ion batteries[J]. Advanced Science,2022,9:2200023. doi: 10.1002/advs.202200023
    [42] Wang Y Y, Hou B H, Lü H Y, et al. Hierarchically porous N-doped carbon nanosheets derived from grapefruit peels for high-performance supercapacitors[J]. ChemistrySelect,2016,1:1441-1447. doi: 10.1002/slct.201600133
    [43] Yun Y S, Cho S Y, Shim J Y, et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors[J]. Advanced Materials,2013,25:1993-1998. doi: 10.1002/adma.201204692
    [44] Hou B-H, Wang YY, Ning QL, et al. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: Superb room/low-temperature sodium storage and working mechanism[J]. Advanced Materials,2019,31:1903125. doi: 10.1002/adma.201903125
    [45] Li Q, Gao Y Z, W H Y. Investigation of pyrolysed anthracite as an anode material for sodium ion batteries[J]. New Journal Chemistry,2022,46:13575-13581. doi: 10.1039/D2NJ01258H
    [46] Chu Y, Zhang J, Zhang Y B, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Advanced Materials,2023,35:2212186. doi: 10.1002/adma.202212186
    [47] Li Q, Liu X S, Tao Y, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review,2022,9:nwac084. doi: 10.1093/nsr/nwac084
    [48] Li Q, Zhang J, Zhong L X, et al. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes[J]. Advanced Energy Materials,2022,12:2201734. doi: 10.1002/aenm.202201734
    [49] Yu H Y, Liang H J, Gu Z Y, et al. Waste-to-wealth: Low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries[J]. Electrochimica Acta,2020,361:137041. doi: 10.1016/j.electacta.2020.137041
  • 20240208 Supporting information.pdf
  • 加载中
图(7)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  150
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 录用日期:  2024-01-29
  • 修回日期:  2024-01-27
  • 网络出版日期:  2024-02-06
  • 刊出日期:  2024-04-03

目录

    /

    返回文章
    返回