牛慧祝, 王海花, 孙立宇, 杨晨榕, 王雨, 曹瑞, 杨存国, 王洁, 舒珂维. 采用两步炭化法和熔盐模板法制备N、S 共掺杂煤基硬炭及共储钠性能[J]. 新型炭材料, 2024, 39(2): 297-307. DOI: 10.1016/S1872-5805(24)60842-5
引用本文: 牛慧祝, 王海花, 孙立宇, 杨晨榕, 王雨, 曹瑞, 杨存国, 王洁, 舒珂维. 采用两步炭化法和熔盐模板法制备N、S 共掺杂煤基硬炭及共储钠性能[J]. 新型炭材料, 2024, 39(2): 297-307. DOI: 10.1016/S1872-5805(24)60842-5
NIU Hui-zhu, WANG Hai-hua, SUN Li-yu, YANG Chen-rong, WANG Yu, CAO Rui, YANG Cun-guo, WANG Jie, SHU Ke-wei. N, S co-doped coal-based hard carbon prepared by two-step carbonization and a molten salt template method for sodium storage[J]. New Carbon Mater., 2024, 39(2): 297-307. DOI: 10.1016/S1872-5805(24)60842-5
Citation: NIU Hui-zhu, WANG Hai-hua, SUN Li-yu, YANG Chen-rong, WANG Yu, CAO Rui, YANG Cun-guo, WANG Jie, SHU Ke-wei. N, S co-doped coal-based hard carbon prepared by two-step carbonization and a molten salt template method for sodium storage[J]. New Carbon Mater., 2024, 39(2): 297-307. DOI: 10.1016/S1872-5805(24)60842-5

采用两步炭化法和熔盐模板法制备N、S 共掺杂煤基硬炭及共储钠性能

N, S co-doped coal-based hard carbon prepared by two-step carbonization and a molten salt template method for sodium storage

  • 摘要: 硬炭因资源丰富、结构稳定及安全性高等优势,已成为钠离子电池常用阳极材料。其中,煤基衍生硬炭受到了广泛的关注。本工作以长焰煤为碳源,硫脲为氮硫源,NaCl为模板,通过两步炭化工艺和杂原子掺杂相结合的方法合成了N和S共掺杂的煤基硬炭(NSPC1200)。两步炭化过程在调节碳微晶结构和扩大层间距方面发挥了重要的作用。N和S的共掺杂调节了炭材料的电子结构,赋予其更多的活性位点;此外,引入NaCl作为模板有助于孔结构的构建,有利于电极和电解质之间的接触,从而实现Na+和电子的有效传输。在协同作用下,样品NSPC1200表现出优异的储钠能力,在20 mA g−1电流密度下呈现314.2 mAh g−1的可逆容量。即使在100 mA g−1下循环200次,仍保持224.4 mAh g−1的比容量。这项工作成功实现了策略性调整煤基炭材料微观结构的目标,最终获得了具有优异的电化学性能的硬炭阳极。

     

    Abstract: Hard carbon, known for its abundant resources, stable structure and high safety, has emerged as the most popular anode material for sodium-ion batteries (SIBs). Among various sources, coal-derived hard carbon has attracted extensive attention. In this work, N and S co-doped coal-based carbon material (NSPC1200) was synthesized through a combination of two-step carbonization process and heteroatom doping using long-flame coal as a carbon source, thiourea as a nitrogen and sulfur source, and NaCl as a template. The two-step carbonization process played a crucial role in adjusting the structure of carbon microcrystals and expanding the interlayer spacing. The N and S co-doping regulated the electronic structure of carbon materials, endowing more active sites. Additionally, the introduction of NaCl as a template contributed to the construction of pore structure, which facilitates better contact between electrodes and electrolytes, enabling more efficient transport of Na+ and electrons. Under the synergistic effect, NSPC1200 exhibited exceptional sodium storage capacity, reaching 314.2 mAh g−1 at 20 mA g−1. Furthermore, NSPC1200 demonstrated commendable cycling stability, maintaining a capacity of 224.4 mAh g−1 even after 200 cycles. This work successfully achieves the strategic tuning of the microstructure of coal-based carbon materials, ultimately obtaining hard carbon anode with excellent electrochemical performance.

     

/

返回文章
返回