留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废旧三元锂电池石墨负极电化学除杂及其性能研究

张锐 田勇 张维丽 宋佳音 闵杰 庞博 陈建军

张锐, 田勇, 张维丽, 宋佳音, 闵杰, 庞博, 陈建军. 废旧三元锂电池石墨负极电化学除杂及其性能研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60843-7
引用本文: 张锐, 田勇, 张维丽, 宋佳音, 闵杰, 庞博, 陈建军. 废旧三元锂电池石墨负极电化学除杂及其性能研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60843-7
ZHANG Rui, TIAN Yong, ZHANG Wei-li, SONG Jia-yin, MIN Jie, PANG Bo, CHEN Jian-jun. Electrochemical method for impurity removal and performance study of graphite anode in spent ternary lithium ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60843-7
Citation: ZHANG Rui, TIAN Yong, ZHANG Wei-li, SONG Jia-yin, MIN Jie, PANG Bo, CHEN Jian-jun. Electrochemical method for impurity removal and performance study of graphite anode in spent ternary lithium ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60843-7

废旧三元锂电池石墨负极电化学除杂及其性能研究

doi: 10.1016/S1872-5805(24)60843-7
基金项目: 深圳市可持续发展专项项目(KCXFZ202002011006254),深圳市可持续发展专项项目(KCXFZ20201221173214040),深圳市技术攻关项目(JSGG20190822102607176),广东省基础与应用基础研究(2020A1515011431)资助。
详细信息
    作者简介:

    张锐:张 锐,E-mail:zrhitsz22334@163.com

    通讯作者:

    陈建军,教授级高工. E-mail: chenjj08@126.com

  • 中图分类号: TQ127.1+1

Electrochemical method for impurity removal and performance study of graphite anode in spent ternary lithium ion batteries

More Information
  • 摘要: 随着新能源汽车迅速发展,动力锂离子电池应用越来越广泛,大量锂电池也迎来退役高峰期,废旧锂电池的回收综合利用引起各国高度关注。废旧锂电池石墨负极因其层状结构基本未变化,不需高温石墨化,只关注其内部杂质的去除。本文将废旧石墨负极热处理、超声分离和酸浸处理后,创新性地采用电化学处理将内部金属杂质深度去除。对比不同回收阶段的石墨,发现石墨中有机杂质的存在会严重影响各项电化学性能,微量Cu、Fe等无机杂质的存在对初始放电比容量影响不大,但会降低石墨的循环稳定性。最终回收的石墨内部主要金属杂质含量低于20 mg/kg,在0.1 C倍率下放电比容量达到358.7 mAh/g,循环150圈后容量保持率为95.85%。对比已报道的废旧石墨回收方法,此方法可深度去除石墨负极内部杂质,解决了目前酸碱用量大、除杂不彻底、能耗高等问题,回收再生石墨负极电化学性能较好,为废旧锂电池石墨负极提供了一条新的回收再生路径。
  • 图  1  (a) SG的空气气氛TG-DSC曲线;(b) SG、PG、AG、EG的N2气氛TG曲线;(c) SG、PG、AG与EG的XRD图对比;(d) SG、PG、AG与EG的局部XRD图对比

    Figure  1.  (a)TG-DSC curve of SG in air atmosphere; (b)TG curves of SG, PG, AG and EG in N2 atmosphere; (c) Comparison of XRD patterns of SG, PG, AG and EG; (d) Comparison of local XRD patterns of SG, PG, AG and EG

    图  2  SG、PG、AG与EG的Raman谱图

    Figure  2.  Characterization of recycled anode graphite by Raman spectrometry

    图  3  (a,b) SG的SEM照片;(c,d) PG的SEM照片;(e,f) AG的SEM照片;(g,h) EG的SEM照片(i) SG的C、O、Cu元素分布;(j) PG的C、O、Cu元素分布;(k) AG的C、O、Cu元素分布;(l) EG的C、O、Cu元素分布

    Figure  3.  Characterization of recycled anode graphite by SEM and EDS. (a,b) SEM images of SG; (c,d) SEM images of PG; (e,f) SEM images of AG; (g,h) SEM images of EG; (i) The distribution of C, O and Cu elements in SG; (j) The distribution of C, O and Cu elements in PG; (k) The distribution of C, O and Cu elements in AG; (l) The distribution of C, O and Cu elements in EG

    图  4  (a) EG的CV曲线; (b)EG的CV曲线0V~0.5V局部放大

    Figure  4.  Electrochemical tests of recycled anode graphite by CV (a) The CV curve of EG; (b) The CV curve of EG locally amplified at 0V ~ 0.5V

    图  5  (a) SG、PG、AG和EG的0.1C循环曲线;(b) SG、PG、AG和EG的首周充放电曲线;(c) AG和EG的1C循环曲线;(d) EG的倍率性能

    Figure  5.  Electrochemical tests of recycled anode graphite (a) The 0.1C rate cycling performance of SG, PG, AG and EG; (b) The first cycle charge-discharge curves of SG, PG, AG and EG; (c) The 1C rate cycling performance of AG and EG; (d) Rate performance of EG

    图  6  SG和EG的EIS测试结果

    Figure  6.  EIS test results of SG and EG

    图  7  电化学除杂示意图

    Figure  7.  Schematic of the impurity remove from recycled anode graphite by electrochemical method

    表  1  SG、AG和EG的ICP检测结果/(mg/kg)

    Table  1.   Characterization of recycled anode graphite by ICP /(mg/kg)

    LiAlCuNiCoMnFe
    SG133095214860639231340219
    AG5196810128<5<5116
    EG811314<5<5<513
    下载: 导出CSV
  • [1] Wu N N, Wu K, Gao Y, et al. Advantages of lithium ion batteries in energy storage field[J]. Advance Materials Industry,2010(10):48.
    [2] Yang J, Jiang L X, Liu F Y, et al. Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant[J]. Transactions of Nonferrous Metals Society of China,2020,30:2256-2264. doi: 10.1016/S1003-6326(20)65376-6
    [3] Contestabile M, Panero S, Scrosati B. A laboratory-scale lithium-ion battery recycling process[J]. Journal of Power Sources,2001,92(1-2):65-69. doi: 10.1016/S0378-7753(00)00523-1
    [4] Wohlfahrt-Mehrens M, Vogler C, Garche J. Aging mechanisms of lithium cathode materials[J]. Journal of Power Sources,2004,127(1-2):58-64. doi: 10.1016/j.jpowsour.2003.09.034
    [5] Wang H, Jang Y I, Huang B, et al. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,1999,146(2):473-480. doi: 10.1149/1.1391631
    [6] Arora P, White R E, Doyle M. Capacity fade mechanisms and side reactions in lithium-ion batteries[J]. Journal of the Electrochemical Society,1998,145(10):3647-3667. doi: 10.1149/1.1838857
    [7] Sloop S E, Pugh J K, Wang S, et al. Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions[J]. Electrochemical and Solid-State Letters,2004,4(4):A42-A44.
    [8] Murphy S J, Grigahcene A, Niemczura E, et al. Corrosion of lithium-ion battery current collectors[J]. Journal of the Electrochemical Society,1999,146(2):448-456. doi: 10.1149/1.1391627
    [9] Bai Y C, Muralidharan N, Sun Y K, et al. Energy and environmental aspects in recycling lithium-ion batteries: Concept of battery identity global passport[J]. Materials Today,2020,41:304-15. doi: 10.1016/j.mattod.2020.09.001
    [10] 杨涛, 刘文凤, 马梦月, 等. 三元锂离子动力电池衰减机理[J]. 应用化学,2020,37(10):1181-1186. doi: 10.11944/j.issn.1000-0518.2020.10.200116

    Yang T, Liu W F, Ma M Y, et al. Fade mechanism of ternary lithium ion power battery[J]. Chinese Journal of Applied Chemistry,2020,37(10):1181-1186. doi: 10.11944/j.issn.1000-0518.2020.10.200116
    [11] 阮一钊, 田艳红, 李守涛, 等. LiNi0. 5Co0.2Mn0.3O2/石墨电池高温失效的机理[J]. 电池,2020,50(03):220-223.

    Ruan Y Z, Tian Y H, Li S T, et al. High temperature failure mechanism of LiNi0.5Co0.2Mn0.3O2/graphite battery[J]. Battery Bimonthly,2020,50(03):220-223.
    [12] Bi H J, Zhu H B, Zu L, et al. Combined mechanical process recycling technology for recovering copper and aluminium components of spent lithium-iron phosphate batteries[J]. Waste Management & Research:the Journal of the International Solid Wastes and Public Cleansing Association, ISWA,2019,37(8):767-780.
    [13] Wang F F, Zhang T, He Y Q, et al. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment[J]. Journal of Cleaner Production,2018,185:646-652. doi: 10.1016/j.jclepro.2018.03.069
    [14] Zhang G W, He Y Q, Feng Y, et al. Enhancement in liberation of electrode materials derived from spent lithium-ion battery by pyrolysis[J]. Journal of Cleaner Production,2018,199:62-68. doi: 10.1016/j.jclepro.2018.07.143
    [15] Liu K, Yang S L, Luo L Q, et al. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta,2020,356:136856. doi: 10.1016/j.electacta.2020.136856
    [16] Natarajan S, Shanthana L D, Bajaj H C, et al. Recovery and utilization of graphite and polymer materials from spent lithium-ion batteries for synthesizing polymer-graphite nanocomposite thin films[J]. Journal of Enviromental Chemical Engineering,2015,3(4):2538-2545. doi: 10.1016/j.jece.2015.09.011
    [17] Yang Y, Song S L, Lei S Y, et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery[J]. Waste Management,2019,85:529-537. doi: 10.1016/j.wasman.2019.01.008
    [18] Zhang J, Li X L, Song D W, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources,2018,390:38-44. doi: 10.1016/j.jpowsour.2018.04.039
    [19] Yang K, Gong P Y, Tian Z L, et al. Recycling spent carbon cathode by a roasting method and its application in Li-ion batteries anodes[J]. Journal of Cleaner Production,2020,261:121090-121090. doi: 10.1016/j.jclepro.2020.121090
    [20] Zhang J, Li X L, Song D W, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources,2018,390:38-44. doi: 10.1016/j.jpowsour.2018.04.039
    [21] Wang A P, Kadam S, Li H, et al. Review on modeling of the anode solid electrolyte interphase(SEI) for lithium-ion batteries[J]. npj Computational Materials,2018,4(1):359-367.
    [22] Ma Z, Zhuang Y C, Deng Y M, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries[J]. Journal of Power Sources,2018,376:91-99. doi: 10.1016/j.jpowsour.2017.11.038
    [23] Wang H R, Huang Y S, Huang C F, et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically[J]. Electrochimica Acta,2019,313:423-431. doi: 10.1016/j.electacta.2019.05.050
    [24] Huang Q, Ni S, Jiao M, et al. Aligned carbon-based electrodes for fast-charging batteries: A Review[J]. Small,2021,17(48):2007676-2007701. doi: 10.1002/smll.202007676
    [25] Wang G, Pan C, Wang L P, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J]. Electrochimica Acta,2012,69:65-70. doi: 10.1016/j.electacta.2012.02.066
    [26] Shao H, Wu Y C, Lin Z F, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews,2020,49(10):3005-3039. doi: 10.1039/D0CS00059K
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  37
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27
  • 录用日期:  2024-02-02
  • 修回日期:  2024-01-31
  • 网络出版日期:  2024-02-21

目录

    /

    返回文章
    返回