留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A new anode material for high rate and long life lithium/sodium storage

ZHANG Chun-hui ZHANG Jia-yuan ZHAN Jie-yang YU Jian FAN Lin-lin YANG An-ping LIU hong GAO Guang-gang

张春晖, 张家源, 湛杰杨, 于健, 范林林, 杨安平, 刘红, 高广刚. 一种新型的负极材料助力高倍率及长寿命的锂/钠储存. 新型炭材料(中英文), 2024, 39(2): 308-320. doi: 10.1016/S1872-5805(24)60845-0
引用本文: 张春晖, 张家源, 湛杰杨, 于健, 范林林, 杨安平, 刘红, 高广刚. 一种新型的负极材料助力高倍率及长寿命的锂/钠储存. 新型炭材料(中英文), 2024, 39(2): 308-320. doi: 10.1016/S1872-5805(24)60845-0
ZHANG Chun-hui, ZHANG Jia-yuan, ZHAN Jie-yang, YU Jian, FAN Lin-lin, YANG An-ping, LIU hong, GAO Guang-gang. A new anode material for high rate and long life lithium/sodium storage. New Carbon Mater., 2024, 39(2): 308-320. doi: 10.1016/S1872-5805(24)60845-0
Citation: ZHANG Chun-hui, ZHANG Jia-yuan, ZHAN Jie-yang, YU Jian, FAN Lin-lin, YANG An-ping, LIU hong, GAO Guang-gang. A new anode material for high rate and long life lithium/sodium storage. New Carbon Mater., 2024, 39(2): 308-320. doi: 10.1016/S1872-5805(24)60845-0

一种新型的负极材料助力高倍率及长寿命的锂/钠储存

doi: 10.1016/S1872-5805(24)60845-0
基金项目: 国家自然科学基金(22201098);山东省自然科学基金(ZR2021QB005)和济南市“新高校20条”资助项目(202228113)
详细信息
    通讯作者:

    范林林,博士,副教授. E-mail:mse_fanll@ujn.edu.cn

    高广刚,博士,教授. E-mail:mse_gaogg@ujn.edu.cn

  • 中图分类号: TQ152

A new anode material for high rate and long life lithium/sodium storage

Funds: This work was supported by the National Natural Science Foundation of China (22201098), the Natural Science Foundation of Shandong Province (ZR2021QB005), and the Jinan City “New University 20” Project (202228113)
More Information
  • 摘要: 在锂离子电池(LIBs)和钠离子电池(SIBs)中,设计同时适用的负极材料,使其具有高倍率性能和超长循环寿命是亟需解决的工作。本文采用静电纺丝技术和硫化工程技术成功制备了一种均匀分布在N,S-掺杂炭纳米纤维上的MoO2/MoS2异质结构(MoO2/MoS2@NSC)。其中一维炭骨架作为导电框架可缩短Li+/Na+的扩散途径;炭纳米纤维中N/S杂原子的掺杂引入了丰富的活性位点,显著增强了离子扩散动力学。此外,在MoO2相中通过原位形成的MoS2纳米片强化了异质界面,MoO2和MoS2之间异质界面的构建使得Li+/Na+的快速传输成为实现高效储能的关键。因此,作为LIBs负极材料时,MoO2/MoS2@NSC电极在5.0 A g−1的电流密度下循环2000圈后,仍具有640 mAh g−1的优异放电比容量,每圈的容量衰减率仅为0.002%;在10.0 A g−1的高电流密度下可达到614 mAh g−1的放电比容量。对于SIBs,在2.0 A g−1的电流密度下循环2000圈后其可逆容量仍能达到242 mAh g−1。本工作采用一种新颖的界面调控策略来合理地设计负极材料,从而提高Li+/Na+储存动力学,实现超长寿命的循环性能。
  • FIG. 3066.  FIG. 3066.

    FIG. 3066..  FIG. 3066.

    Figure  1.  (a) XRD patterns of MoO2/MoS2@NSC-Ⅰ, MoO2/MoS2@NSC-Ⅱ, and MoO2/MoS2@NSC-Ⅲ. (b) TG curves of MoO2/MoS2@NSC-Ⅱ. (c) S 2p high-resolution XPS spectrum of MoO2/MoS2@NSC-Ⅱ. (d) Mo 3d and (e) N 1s high-resolution XPS spectra of MoO2@NSC and MoO2/MoS2@NSC-Ⅱ

    Figure  2.  SEM and TEM images of (a, d) MoO2/MoS2@NSC-Ⅰ, (b, e) MoO2/MoS2@NSC-Ⅱ, and (c, f) MoO2/MoS2@NSC-Ⅲ. (g) TEM images and (h) EDS elemental mapping images of MoO2/MoS2@NSC-Ⅱ

    Figure  3.  (a) CV curves of MoO2/MoS2@NSC-Ⅱ at the first three cycles (scan rate: 0.1 mV s−1). (b) The discharge/charge profiles of MoO2/MoS2@NSC-Ⅱ at 0.1 A g−1. (c) The cycling performance of MoO2@NSC, MoO2/MoS2@NSC-Ⅰ, MoO2/MoS2@NSC-Ⅱ and MoO2/MoS2@NSC-Ⅲ at 2.0 A g−1. (d) Rate capability of MoO2@NSC, MoO2/MoS2@NSC-Ⅰ, MoO2/MoS2@NSC-Ⅱ, and MoO2/MoS2@NSC-Ⅲ. (e) Long-term cycling performance and Coulombic efficiency of MoO2/MoS2@NSC-Ⅱ at 5.0 A g−1 and 10.0 A g−1

    Figure  4.  (a) Comparison of rate capability of the MoO2/MoS2@NSC-Ⅱ electrode with some other previously reported MoO2/MoS2-based anodes for LIBs in the literature. (b) b-Value analysis using the relationship between peak currents and scan rates for MoO2/MoS2@NSC-Ⅱ. (c) The detailed capacitive contribution (shaded region) of MoO2/MoS2@NSC-Ⅱ at 0.8 mV s−1. (d) The percentage ratio of capacitive and diffusion-controlled capacities at different scan rates for MoO2/MoS2@NSC-Ⅱ. (e) Plots of the peak current versus the square root of the scan rate of MoO2@NSC, MoO2/MoS2@NSC-Ⅰ, MoO2/MoS2@NSC-Ⅱ and MoO2/MoS2@NSC-Ⅲ. (f) Nyquist plots of MoO2@NSC and MoO2/MoS2@NSC-Ⅱ in the 100th and 200th cycles under the current density of 5.0 A g−1 (1: MoO2@NSC 100th; 2: MoO2@NSC 200th; 3: MoO2/MoS2@NSC-Ⅱ 100th; 4: MoO2/MoS2@NSC-Ⅱ 200th). (g) The corresponding plots of the real part of impedance (Z’) as a function of the inverse square root of the angular frequency (ω−1/2) in the Warburg region in the 100th and 200th cycles for MoO2@NSC and MoO2/MoS2@NSC-Ⅱ

    Figure  5.  (a) CV curves of MoO2/MoS2@NSC-Ⅱ at first three cycles (scan rate: 0.1 mV s−1). (b) The discharge/charge profiles of MoO2/MoS2@NSC-Ⅱ at 0.1 A g−1. (c) The cycling performance of MoO2/MoS2@NSC-Ⅱ at 0.1 A g−1. (d) The rate performance of MoO2@NSC, MoO2/MoS2@NSC-Ⅰ, MoO2/MoS2@NSC-Ⅱ and MoO2/MoS2@NSC-Ⅲ. (e) Long-term cycling performance of MoO2@NSC, MoO2/MoS2@NSC-Ⅰ, MoO2/MoS2@NSC-Ⅱ and MoO2/MoS2@NSC-Ⅲ at 2.0 A g−1. Ex-situ XPS analysis of the MoO2/MoS2@NSC-Ⅱ electrode at fully discharged/charged states: (f) Mo 3d, (g) O 1s and (h) S 2p high-resolution XPS spectra

  • [1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367. doi: 10.1038/35104644
    [2] Li X, Chu Q, Song M Q, et al. Porous CoO/Co3O4 nanoribbons as a superior performance anode material for lithium-ion batteries[J]. Applied Surface Science,2023,618:156658. doi: 10.1016/j.apsusc.2023.156658
    [3] Liu S Y, Jia K L, Yang J, et al. Encapsulating flower-like MoS2 nanosheets into interlayer of nitrogen-doped graphene for high-performance lithium-ion storage[J]. Chemical Engineering Journal,2023,475:146181. doi: 10.1016/j.cej.2023.146181
    [4] Che X G, Jin J, Zhang Y X, et al. Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors[J]. New Carbon Materials,2023,38(6):1050-1058. doi: 10.1016/S1872-5805(23)60752-8
    [5] Wang M, Che X G, Liu S Y, et al. A review of carbon-based cathode materials for zinc-ion capacitors[J]. New Carbon Materials,2021,36(1):155-166.
    [6] Zheng H, Chen X, Li L, et al. Synthesis of NiS2/reduced graphene oxide nanocomposites as anodes materials for high-performance Sodium and Potassium ion batteries[J]. Materials Research Bulletin,2021,142:111430. doi: 10.1016/j.materresbull.2021.111430
    [7] Nayak P K, Yang L T, Brehm W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges and surprises[J]. Angewandte Chemie International Edition,2018,57(1):102-120. doi: 10.1002/anie.201703772
    [8] Zang Y, Lu D Q, Lan Y Q. Covalent organic frameworks: A new platform for next-generation batteries of Na-, K- and Zn-ions[J]. Science Bulletin,2022,67(16):1621-1624. doi: 10.1016/j.scib.2022.07.014
    [9] Zhang T Y, Ran F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Advanced Functional Materials,2021,31(17):2010041. doi: 10.1002/adfm.202010041
    [10] Cherevan A S, Nandan S P, Roger I, et al. Polyoxometalates on functional substrates: Concepts, synergies and future perspectives[J]. Advanced Science,2020,7(8):1903511. doi: 10.1002/advs.201903511
    [11] Wang J, Zhu W J, Zhang J Y, et al. Ratiometric response to formaldehyde by 3D silver SERS substrate with polyoxometalate as internal label[J]. Sensors and Actuators B: Chemical,2023,381:133450. doi: 10.1016/j.snb.2023.133450
    [12] Guo L, He L, Zhuang Q H, et al. Recent advances in confining polyoxometalates and the applications[J]. Small, 2023, 2207315.
    [13] Zhang J Y, Wang X Y, Wang G, et al. Ultrasensitive photochromism and impedance dual response to weak visible light by solvated Pb(II) modified polyoxomolybdate[J]. Chinese Chemical Letters,2023,34(2):107231. doi: 10.1016/j.cclet.2022.02.036
    [14] Gong M D, Mu W X, Cao Y D, et al. A giant polyoxomolybdate molecular catalyst with unusual Mo6+/Mo5+ synergistic mechanism for oxidation of hydroxyfurfural under atmospheric pressure[J]. Fuel Processing Technology,2023,242:107635. doi: 10.1016/j.fuproc.2022.107635
    [15] Zhang X Z, Zhu W J, Yang Z X, et al. Ultrasensitive photochromic and Raman dual response to ethylenediamine gas through polyoxometalate-viologen crystalline hybrid[J]. Journal of Materials Chemistry C,2022,10(41):15451-15457. doi: 10.1039/D2TC03053E
    [16] Fan L L, Wang M L, Dong X Y, et al. V-substitution function on polyoxometalate catalyst for rapid conversion of polyselenides in Li-Se batteries[J]. Chemical Engineering Journal,2022,449:137819. doi: 10.1016/j.cej.2022.137819
    [17] Dong X Y, Cao Y D, Zhang J Y, et al. An effective implantation strategy of Mo atom in polyoxometalate to boost high-performance lithium-sulfur batteries[J]. Applied Surface Science,2023,615:156348. doi: 10.1016/j.apsusc.2023.156348
    [18] Wei T, Zhang M, Wu P, et al. POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage[J]. Nano Energy,2017,34:205-214. doi: 10.1016/j.nanoen.2017.02.028
    [19] Song J, Jiang Y Y, Lu Y Z, et al. Effective polysulfide adsorption and catalysis by polyoxometalate contributing to high-performance Li-S batteries[J]. Materials Today Nano,2022,19:100231. doi: 10.1016/j.mtnano.2022.100231
    [20] Wang X K, Li Z Q, Zhang Z W, et al. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries[J]. Nanoscale,2015,7(8):3604-3613. doi: 10.1039/C4NR05789A
    [21] Qiu J Y C, Yang Z X, Li Q, et al. Formation of N-doped molybdenum carbide confined in hierarchical and hollow carbon nitride microspheres with enhanced sodium storage properties[J]. Journal of Materials Chemistry A,2016,4(34):13296-13306. doi: 10.1039/C6TA05025E
    [22] Sun P L, Zhang W X, Hu X L, et al. Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2014,2(10):3498-3504. doi: 10.1039/C3TA13994H
    [23] Jia G C, Wang H W, Chao D L, et al. Ultrathin MoSe2@N-doped carbon composite nanospheres for stable Na-ion storage[J]. Nanotechnology,2017,28(42):42LT01. doi: 10.1088/1361-6528/aa8c55
    [24] Wang X, Sun P P, Qin J W, et al. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries[J]. Nanoscale,2016,8(19):10330-10338. doi: 10.1039/C6NR01774F
    [25] Yao C, Zhang H M, Liu T, et al. Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery[J]. Journal of Power Sources,2012,218:455-461. doi: 10.1016/j.jpowsour.2012.06.072
    [26] Yan Y, Li P Q, Gu Z Y, et al. A low-surface-energy design to allogeneic sulfide heterostructures anchored on ultrathin graphene sheets for fast sodium storage[J]. Chemical Engineering Journal,2022,432:134195. doi: 10.1016/j.cej.2021.134195
    [27] Cheng J Y, Niu Z L, Zhao Z P, et al. Enhanced ion/electron migration and sodium storage driven by different MoS2-ZnIn2S4 heterointerfaces[J]. Advanced Energy Materials,2023,13(5):2203248. doi: 10.1002/aenm.202203248
    [28] Zhang C F, Li H, Zeng X H, et al. Accelerated diffusion kinetics in ZnTe/CoTe2 heterojunctions for high rate potassium storage[J]. Advanced Energy Materials,2022,12(41):2202577. doi: 10.1002/aenm.202202577
    [29] Yu J, Wang M L, Yang Z X, et al. Polyoxometalate@MOF derived porous carbon-supported MoO2/MoS2 octahedra boosting high-rate lithium storage[J]. Dalton Transactions,2021,50(41):14595-14601. doi: 10.1039/D1DT02475B
    [30] Ding J, Sheng R, Zhang Y, et al. Fe2O3/MoO3@NG heterostructure enables high pseudocapacitance and fast electrochemical reaction kinetics for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2022,14(33):37747-37758.
    [31] Liu X Z, Cheng Q, Zhong W T, et al. Construction of defective MoxW1-xS2/Cu7.2S4 polyhedral heterostructures for fast sodium storage[J]. Chemical Engineering Journal,2023,451:138645. doi: 10.1016/j.cej.2022.138645
    [32] Jia M, Jin Y H, Zhao C C, et al. ZnSe nanoparticles decorated with hollow N-doped carbon nanocubes for high-performance anode material of sodium ion batteries[J]. Journal of Alloys and Compounds,2020,831:154749. doi: 10.1016/j.jallcom.2020.154749
    [33] Liu H D, Hu H T, Wang J, et al. Hierarchical ternary MoO2/MoS2/heteroatom-doped carbon hybrid materials for high-performance lithium-ion storage[J]. ChemElectroChem,2016,3(6):922-932. doi: 10.1002/celc.201600062
    [34] Liu A F, Guan Y M, Guo Z C, et al. Carbon/MoO2@MoS2 ternary synergetic systems: Heterojunction structures with effective self-built electric fields for high-performance lithium ion batteries[J]. Solid State Ionics,2019,340:115021. doi: 10.1016/j.ssi.2019.115021
    [35] Sun Y M, Hu X L, Luo W, et al. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries[J]. ACS Nano,2011,5(9):7100-7107. doi: 10.1021/nn201802c
    [36] Chen Z, Yin D G, Zhang M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries[J]. Small,2018,14(17):1703818. doi: 10.1002/smll.201703818
    [37] Dong W D, Li C F, Wang C Y, et al. Phase conversion accelerating “Zn-Escape” effect in ZnSe-CFs heterostructure for high performance sodium-ion half/full batteries[J]. Small,2022,18(43):2105169. doi: 10.1002/smll.202105169
    [38] Li X M, Zai J T, Xiang S J, et al. Regeneration of metal sulfides in the delithiation process: The key to cyclic stability[J]. Advanced Energy Materials,2016,6(19):1601056. doi: 10.1002/aenm.201601056
    [39] Zhao X W, Liu Z C, Xiao W Y, et al. Low crystalline MoS2 nanotubes from MoS2 nanomasks for lithium ion battery applications[J]. ACS Applied Nano Materials,2020,3(8):7580-7586. doi: 10.1021/acsanm.0c01212
    [40] Guo P Q, Sun K, Liu D Q, et al. Molybdenum disulfide nanosheets embedded in hollow nitrogen-doped carbon spheres for efficient lithium/sodium storage with enhanced electrochemical kinetics[J]. Electrochimica Acta,2018,283:646-654. doi: 10.1016/j.electacta.2018.06.141
    [41] Zheng C, Luo N J, Huang S P, et al. Nanocomposite of Mo2N quantum dots@MoO3@nitrogen-doped carbon as a high-performance anode for lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering,2019,7(12):10198-10206.
    [42] Xiao D B, Zhang J Y, Li X, et al. Nanocarved MoS2-MoO2 hybrids fabricated using in situ grown MoS2 as nanomasks[J]. ACS Nano,2016,10(10):9509-9515. doi: 10.1021/acsnano.6b04643
    [43] Xu Z W, Wang H L, Li Z, et al. Sulfur refines MoO2 distribution enabling improved lithium ion battery performance[J]. The Journal of Physical Chemistry C,2014,118(32):18387-18396. doi: 10.1021/jp504721y
    [44] Wang X J, Zhang S, Shan Y, et al. In situ heterogeneous interface construction boosting fast ion/electron transfer for high-performances lithium/potassium storage[J]. Energy Storage Materials,2021,37:55-66. doi: 10.1016/j.ensm.2021.01.027
    [45] Liu X F, Mei P, Dou Y, et al. Heteroarchitecturing a novel three-dimensional hierarchical MoO2/MoS2/carbon electrode material for high-energy and long-life lithium storage[J]. Journal of Materials Chemistry A,2021,9(22):13001-13007. doi: 10.1039/D1TA01706C
    [46] Yang W J, Han L J, Liu X J, et al. Template-free fabrication of 1D core-shell MoO2@MoS2/nitrogen-doped carbon nanorods for enhanced lithium/sodium-ion storage[J]. Journal of Colloid and Interface Science,2021,588:804-812. doi: 10.1016/j.jcis.2020.11.115
    [47] Wu C L, Hu J L, Yao Z G, et al. Highly reversible conversion anodes composed of ultralarge monolithic grains with seamless intragranular binder and wiring network[J]. ACS Applied Materials & Interfaces,2019,11(26):23280-23290.
    [48] Deng Z N, Hu Y J, Ren D Y, et al. Reciprocal hybridization of MoO2 nanoparticles and few-layer MoS2 for stable lithium-ion batteries[J]. Chemical Communications,2015,51(72):13838-13841. doi: 10.1039/C5CC05069C
    [49] Xie J R, Zhu K J, Min J, et al. In-situ grown ultrathin MoS2 nanosheets on MoO2 hollow nanospheres to synthesize hierarchical nanostructures and its application in lithium-ion batteries[J]. Ionics,2019,25:1487-1494. doi: 10.1007/s11581-019-02863-3
    [50] Sun H, Xu J L, Huang J D, et al. Facile synthesis of hetero-structured few-layer MoS2-coated MoO2 as superior anode materials of lithium ion batteries[J]. Journal of Alloys and Compounds,2021,851:156726. doi: 10.1016/j.jallcom.2020.156726
    [51] Wang X, Xiao Y, Wang J Q, et al. Facile fabrication of molybdenum dioxide/nitrogen-doped graphene hybrid as high performance anode material for lithium ion batteries[J]. Journal of Power Sources,2015,274:142-148. doi: 10.1016/j.jpowsour.2014.10.031
    [52] Xu Z W, Wang T, Kong L, et al. MoO2@MoS2 nanoarchitectures for high-loading advanced lithium-ion battery anodes[J]. Particle & Particle Systems Characterization,2017,34(3):1600223.
    [53] Zhang R, Tang Z, Wang H Y, et al. The fabrication of hierarchical MoO2@MoS2/rGO composite as high reversible anode material for lithium ion batteries[J]. Electrochimica Acta,2020,364:136996. doi: 10.1016/j.electacta.2020.136996
    [54] Qin J, Sari H M K, Wang X J, et al. Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: Synergistic mechanisms of hybrid ion storage[J]. Nano Energy,2020,71:104594. doi: 10.1016/j.nanoen.2020.104594
    [55] Zhou Y L, Zhang M, Han Q, et al. Hierarchical 1 T-MoS2/MoOx@NC microspheres as advanced anode materials for potassium/sodium-ion batteries[J]. Chemical Engineering Journal,2022,428:131113. doi: 10.1016/j.cej.2021.131113
    [56] Shi N X, Xi B J, Huang M, et al. Hierarchical octahedra constructed by Cu2S/MoS2 $ \subset $ carbon framework with enhanced sodium storage[J]. Small,2020,16(23):2000952. doi: 10.1002/smll.202000952
    [57] Wang M L, Yin D, Cao Y D, et al. Surface modification of hollow capsule by Dawson-type polyoxometalate as sulfur hosts for ultralong-life lithium-sulfur batteries[J]. Chinese Chemical Letters,2022,33(9):4350-4356. doi: 10.1016/j.cclet.2021.11.043
    [58] Fan L L, Lei S L, Sari H M K, et al. Controllable S-vacancies of monolayered Mo-S nanocrystals for highly harvesting lithium storage[J]. Nano Energy,2020,78:105235. doi: 10.1016/j.nanoen.2020.105235
    [59] Zhan W W, Zhu M, Lan J L, et al. 1D Sb2S3@nitrogen-doped carbon coaxial nanotubes uniformly encapsulated within 3D porous graphene aerogel for fast and stable sodium storage[J]. Chemical Engineering Journal,2021,408:128007. doi: 10.1016/j.cej.2020.128007
    [60] Liu H, Liu B H, Guo H, et al. N-doped C-encapsulated scale-like yolk-shell frame assembled by expanded planes few-layer MoSe2 for enhanced performance in sodium-ion batteries[J]. Nano Energy,2018,51:639-648. doi: 10.1016/j.nanoen.2018.07.021
    [61] Zhao X, Wang H E, Yang Y, et al. Reversible and fast Na-ion storage in MoO2/MoSe2 heterostructures for high energy-high power Na-ion capacitors[J]. Energy Storage Materials,2018,12:241-251. doi: 10.1016/j.ensm.2017.12.015
    [62] Feng J, Luo S H, Li P W, et al. Unveiling the efficient sodium storage and mechanism of MOFs-induced CoSe@N-doped carbon polyhedrons decorated with 2H-MoSe2 nanosheets[J]. Applied Surface Science,2023,619:156775. doi: 10.1016/j.apsusc.2023.156775
    [63] Zhao W X, Ci S Q, Hu X, et al. Highly dispersed ultrasmall NiS2 nanoparticles in porous carbon nanofiber anodes for sodium ion batteries[J]. Nanoscale,2019,11(11):4688-4695. doi: 10.1039/C9NR00160C
    [64] Dong S H, Li C X, Li Z Q, et al. Mesoporous hollow Sb/ZnS@C core-shell heterostructures as anodes for high-performance sodium-ion batteries[J]. Small,2018,14(16):1704517. doi: 10.1002/smll.201704517
  • 20240211 Supporting information.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  40
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-10
  • 录用日期:  2024-02-04
  • 修回日期:  2024-02-03
  • 网络出版日期:  2024-02-27
  • 刊出日期:  2024-04-03

目录

    /

    返回文章
    返回