留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Revealing the correlation of high-frequency performance of supercapacitors with doped nitrogen species

FAN Ya-feng YI Zong-lin ZHOU Yi XIE Li-jing SUN Guo-hua WANG Zhen-bing Huang Xian-hong SU Fang-yuan CHEN Cheng-meng

范亚锋, 易宗琳, 周易, 谢莉婧, 孙国华, 王振兵, 黄显虹, 苏方远, 陈成猛. 氮掺杂构型对超级电容器高频响应的影响机制研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60849-8
引用本文: 范亚锋, 易宗琳, 周易, 谢莉婧, 孙国华, 王振兵, 黄显虹, 苏方远, 陈成猛. 氮掺杂构型对超级电容器高频响应的影响机制研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60849-8
FAN Ya-feng, YI Zong-lin, ZHOU Yi, XIE Li-jing, SUN Guo-hua, WANG Zhen-bing, Huang Xian-hong, SU Fang-yuan, CHEN Cheng-meng. Revealing the correlation of high-frequency performance of supercapacitors with doped nitrogen species. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60849-8
Citation: FAN Ya-feng, YI Zong-lin, ZHOU Yi, XIE Li-jing, SUN Guo-hua, WANG Zhen-bing, Huang Xian-hong, SU Fang-yuan, CHEN Cheng-meng. Revealing the correlation of high-frequency performance of supercapacitors with doped nitrogen species. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60849-8

氮掺杂构型对超级电容器高频响应的影响机制研究

doi: 10.1016/S1872-5805(24)60849-8
基金项目: 国家重点研发计划(2022YFF0609802,2022YFF0609801);国家自然科学基金(22179139,21975275);山西省基础研究计划(20210302123008);山西省重点研发计划(2021020660301013,202102040201003,202102070301018);山西省专利转化专项计划(202303009)
详细信息
    通讯作者:

    苏方远,研究员,E-mail:sufangyuan@sxicc.ac.cn

    陈成猛,研究员,E-mail:chencm@sxicc.ac.cn

  • 中图分类号: TQ152

Revealing the correlation of high-frequency performance of supercapacitors with doped nitrogen species

Funds: This work gratefully acknowledges the support of the National Key Research and Development (R&D) Program of China (2022YFF0609802, 2022YFF0609801), National Natural Science Foundation of China (22179139, 21975275), Fundamental Research Program of Shanxi Province (20210302123008), Key Research and Development (R&D) Projects of Shanxi Province (2021020660301013, 202102040201003, 202102070301018), Patent Transformation Special Plan Project of Shanxi Province (202303009)
More Information
  • 摘要: 氮掺杂炭材料已被广泛用于增强超级电容器的高频响应能力。然而,不同氮构型在高频下的电荷存储和离子响应机制仍不清楚。在本研究中,我们以具有开放结构的炭化三聚氰胺泡沫为简化模型材料,全面分析了N掺杂构型对超级电容器高频响应行为的影响。结合实验结果和第一性原理计算,我们发现具有较高吸附能的吡咯氮可以增强高频下炭电极的电荷存储能力。而具有较低吸附能的石墨氮则有助于离子在高频下的快速响应。此外,我们提出吸附能可作为高频下电极/电解液界面设计的描述符,这为优化氮掺杂炭材料的高频性能提供了更普适的方法。这些结论为开发用于高频超级电容器的氮掺杂炭电极材料提供了指导。
  • Figure  1.  Morphology characterizations of the CMF. (a) Molecular structure diagram of melamine resin. (b) Digital photos of a piece of melamine foam before and after carbonization. (c) SEM images of CMF-1000. (d) The corresponding elemental mapping of CMF-1000

    Figure  2.  Structure characterizations of the CMF. (a) N2 adsorption-desorption isotherms. (b) Pore size distribution isotherms. (c) Raman spectra. First-order Raman spectrum fitting curve of (d) CMF-800, (e) CMF-900 and (f) CMF-1000

    Figure  3.  The physicochemical characterizations of CMFs. (a) XRD pattern. (b) FT-IR spectrum. (c) XPS surveys. High-resolution N 1s spectra of (d) CMF-800, (e) CMF-900 and (e) CMF-1000

    Figure  4.  The electrochemical performances of CMF in 1 mol L−1 Na2SO4 electrolyte. (a) CV curves at 2000 V s−1, (b) Plots of discharge current density versus scan rate, (c) Nyquist complex impedance spectrum, (d) Bode phase diagram, (e) the variation of Cm, (f) $ {{C}}'' $ versus frequency based on series-RC circuit model

    Figure  5.  The performance of CMF in SBPBF4/AN electrolyte. (a) CV curves at 2000 V s−1, (b) Plots of discharge current density versus scan rate, (c) Nyquist complex impedance spectrum, (d) Bode phase diagram, (e) the variation of Cm, (f) $ {{C}}'' $ versus frequency

    Figure  6.  The DFT simulations of various N-doped carbon surfaces. The charge density difference of N-doped carbon surface after ion adsorption with (a) pyridinic nitrogen, (b) pyrrolic nitrogen and (c) graphitic nitrogen, respectively

    Figure  7.  (a) The adsorption energy of Na+, SBP+, TEA+, and EMIM+ on various N-doped carbon surfaces. The linear correlation of −Eads with (b) f0, (c) Cm,120 Hz and (d) τ0, respectively

    Table  1.   Element analysis results of CMF-800, CMF-900, and CMF-1000 by XPS

    SampleElemental content (%)
    C 1sN 1sO 1s
    CMF-80087.364.628.03
    CMF-90088.524.047.44
    CMF-100090.263.436.31
    下载: 导出CSV

    Table  2.   Nitrogen doping configurations of CMF-800, CMF-900 and CMF-1000

    SampleThe relative content of nitrogen configurations (%)
    PyridinicPyrrolicGraphiticOxidized
    CMF-80047.0334.084.9913.90
    CMF-90030.1943.1010.7813.08
    CMF-100019.4227.3036.6514.79
    下载: 导出CSV
  • [1] Miller J R, Outlaw R A, Holloway B C. Graphene double-layer capacitor with ac line-filtering performance[J]. Science,2010,329(5999):1637-1639. doi: 10.1126/science.1194372
    [2] Han F, Qian O, Meng G, et al. Structurally integrated 3D carbon tube grid-based high-performance filter capacitor[J]. Science,2022,377(6609):1004-1007. doi: 10.1126/science.abh4380
    [3] Chi F, Hu Y, He W, et al. Graphene ionogel ultra-fast filter supercapacitor with 4 v workable window and 150 °c operable temperature[J]. Small,2022,18:2200916. doi: 10.1002/smll.202200916
    [4] Zhang M, Dong K, Saeedi Garakani S, et al. Bridged carbon fabric membrane with boosted performance in AC line-filtering capacitors[J]. Advanced Science,2022,9:2105072. doi: 10.1002/advs.202105072
    [5] Li W, Azam S, Dai G, et al. Prussian blue based vertical graphene 3D structures for high frequency electrochemical capacitors[J]. Energy Storage Materials,2020,32:30-36. doi: 10.1016/j.ensm.2020.07.016
    [6] Islam N, Hoque M N F, Li W, et al. Vertically edge-oriented graphene on plasma pyrolyzed cellulose fibers and demonstration of kilohertz high-frequency filtering electrical double layer capacitors[J]. Carbon,2019,141:523-530. doi: 10.1016/j.carbon.2018.10.012
    [7] Miller J R, Outlaw R A. Vertically-oriented graphene electric double layer capacitor designs[J]. Journal of The Electrochemical Society,2015,162(5):A5077-A5082. doi: 10.1149/2.0121505jes
    [8] Xu S, Wen Y, Chen Z, et al. Vertical graphene arrays as electrodes for ultra-high energy density AC line-filtering capacitors[J]. Angewandte Chemie,2021,133(46):24710-24714. doi: 10.1002/ange.202111468
    [9] Li C, Li X, Liu G, et al. Microcrack arrays in dense graphene films for fast-ion-diffusion supercapacitors[J]. Small, 2023: 2301533.
    [10] Zhang Z, Liu M, Tian X, et al. Scalable fabrication of ultrathin free-standing graphene nanomesh films for flexible ultrafast electrochemical capacitors with AC line-filtering performance[J]. Nano Energy,2018,50:182-191. doi: 10.1016/j.nanoen.2018.05.030
    [11] Zhang M, Yu X, Ma H, et al. Robust graphene composite films for multifunctional electrochemical capacitors with an ultrawide range of areal mass loading toward high-rate frequency response and ultrahigh specific capacitance[J]. Energy & Environmental Science,2018,11(3):559-565. doi: 10.1039/c7ee03349d
    [12] Yang C, Schellhammer K S, Ortmann F, et al. Coordination polymer framework based on-chip micro-supercapacitors with AC line-filtering performance[J]. Angewandte Chemie International Edition,2017,56(14):3920-3924. doi: 10.1002/anie.201700679
    [13] Yu T, Wang Y, Jiang K, et al. Catechol-coordinated framework film-based micro-supercapacitors with AC line filtering performance[J]. Chemistry–A European Journal,2021,21:6340-6347. doi: 10.1016/j.nanoen.2017.10.056
    [14] Xue J, Gao Z, Xiao L, et al. An ultrafast supercapacitor based on 3D ordered porous graphene film with AC line filtering performance[J]. ACS Applied Energy Materials,2020,3(6):5182-5189. doi: 10.1021/acsaem.9b02458
    [15] Zhang C, Du H, Ma K, et al. Ultrahigh-rate supercapacitor based on carbon nano-onion/graphene hybrid structure toward compact alternating current filter[J]. Advanced Energy Materials,2020,10:2002132. doi: 10.1002/aenm.202002132
    [16] Islam N, Wang S, Warzywoda J, et al. Fast supercapacitors based on vertically oriented MoS2 nanosheets on plasma pyrolyzed cellulose filter paper[J]. Journal of Power Sources,2018,400:277-283. doi: 10.1016/j.jpowsour.2018.08.049
    [17] Tang H, Tian Y, Wu Z, et al. AC line filter electrochemical capacitors: materials, morphology and configuration[J]. Energy & Enviromental Materials,2022,5:1060-1083. doi: 10.1002/eem2.12285
    [18] Park J, Kim W. History and perspectives on ultrafast supercapacitors for AC line filtering[J]. Advanced Energy Materials,2021,11:2003306. doi: 10.1002/aenm.202003306
    [19] Eftekhari A. The mechanism of ultrafast supercapacitors[J]. Journal of Materials Chemistry A,2018,6(7):2866-2876. doi: 10.1039/C7TA10013B
    [20] Sui Z Y, Meng Y N, Xiao P W, et al. Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents[J]. ACS Applied Materials & Interfaces,2015,7(3):1431-1438. doi: 10.1021/am5042065
    [21] Hulicova-Jurcakova D, Puziy A M, Poddubnaya O I, et al. Highly stable performance of supercapacitors from phosphorus-enriched carbons[J]. Journal of the American Chemical Society,2009,131(14):5026-5027. doi: 10.1021/ja809265m
    [22] Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [23] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources,2006,157(1):11-27. doi: 10.1016/j.jpowsour.2006.02.065
    [24] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [25] Nguyen T H, Yang D, Zhu B, et al. Doping mechanism directed graphene applications for energy conversion and storage[J]. Journal of Materials Chemistry A,2021,9:7366-7395. doi: 10.1039/D0TA11939C
    [26] Zhou Q, Zhang M, Chen J, et al. Nitrogen-doped holey graphene film-based ultrafast electrochemical capacitors[J]. ACS Applied Materials & Interfaces,2016,8(32):20741-20747. doi: 10.1021/acsami.6b05601
    [27] Chang Y, Han G, Fu D, et al. Paper-like N-doped graphene films prepared by hydroxylamine diffusion induced assembly and their ultrahigh-rate capacitive properties[J]. Electrochimica Acta,2014,115:461-470. doi: 10.1016/j.electacta.2013.10.203
    [28] Wu M, Tong S, Jiang L, et al. Nitrogen-doped porous carbon composite with three-dimensional conducting network for high rate supercapacitors[J]. Journal of Alloys and Compounds,2020,844:156217. doi: 10.1016/j.jallcom.2020.156217
    [29] Fan Y F, Yi Z L, Song G, et al. Self-standing graphitized hybrid Nanocarbon electrodes towards high-frequency supercapacitors[J]. Carbon,2021,185:630-640. doi: 10.1016/j.carbon.2021.09.059
    [30] Kresse G, Furthmüller J. Efficient iterative schemes for total-energy calculations using a plane-wave basis set[J]. Physical Review B,1996,54(16):11169-11186. doi: 10.1103/PhysRevB.54.11169
    [31] Wang Y, Alsmeyer D C, McCreery R L. Raman spectroscopy of carbon materials: Structural basis of observed spectra[J]. Chemistry of Materials,1990,2(5):557-563. doi: 10.1021/cm00011a018
    [32] Feng W, Qin M, Lv P, et al. A three-dimensional nanostructure of graphite intercalated by carbon nanotubes with high cross-plane thermal conductivity and bending strength[J]. Carbon,2014,77:1054-1064. doi: 10.1016/j.carbon.2014.06.021
    [33] Biscoe J, Warren B E. An X-Ray study of carbon black[J]. Journal of Applied Physics,1942,13(6):364-371. doi: 10.1063/1.1714879
    [34] Cançado L G, Takai K, Enoki T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Applied Physics Letters,2006,88(16):163106. doi: 10.1063/1.2196057
    [35] Feng L, Wang M, Chang Y, et al. Polymerization-pyrolysis-derived hierarchical nitrogen-doped porous carbon for energetic capacitive energy storage[J]. ACS Applied Energy Materials,2023,6(13):7147-7155. doi: 10.1021/acsaem.3c00818
    [36] Chen C, Zhao M, Cai Y, et al. Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances[J]. Carbon,2021,179:458-468. doi: 10.1016/j.carbon.2021.04.062
    [37] Zhang Z, Zhang Y, Mu X, et al. The carbonization temperature effect on the electrochemical performance of nitrogen-doped carbon monoliths[J]. Electrochimica Acta,2017,242:100-106. doi: 10.1016/j.electacta.2017.05.016
    [38] Chi F, Li C, Zhou Q, et al. Graphene-based organic electrochemical capacitors for AC line filtering[J]. Advanced Energy Materials,2017,7(19):1700591. doi: 10.1002/aenm.201700591
    [39] Cai M, Outlaw R A, Quinlan R A, et al. Fast response, vertically oriented graphene nanosheet electric double layer capacitors synthesized from C2H2[J]. ACS Nano,2014,8(6):5873-5882. doi: 10.1021/nn5009319
    [40] Nathan-Walleser T, Lazar I M, Fabritius M, et al. 3D micro-extrusion of graphene-based active electrodes: towards high-rate AC line filtering performance electrochemical capacitors[J]. Advanced Functional Materials,2014,24(29):4706-4716. doi: 10.1002/adfm.201304151
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-20
  • 录用日期:  2024-04-01
  • 修回日期:  2024-03-29
  • 网络出版日期:  2024-04-07

目录

    /

    返回文章
    返回