范亚锋, 易宗琳, 周易, 谢莉婧, 孙国华, 王振兵, 黄显虹, 苏方远, 陈成猛. 氮掺杂构型对超级电容器高频响应的影响机制[J]. 新型炭材料. DOI: 10.1016/S1872-5805(24)60849-8
引用本文: 范亚锋, 易宗琳, 周易, 谢莉婧, 孙国华, 王振兵, 黄显虹, 苏方远, 陈成猛. 氮掺杂构型对超级电容器高频响应的影响机制[J]. 新型炭材料. DOI: 10.1016/S1872-5805(24)60849-8
FAN Ya-feng, YI Zong-lin, ZHOU Yi, XIE Li-jing, SUN Guo-hua, WANG Zhen-bing, Huang Xian-hong, SU Fang-yuan, CHEN Cheng-meng. Revealing the correlation of high-frequency performance of supercapacitors with doped nitrogen species[J]. New Carbon Mater.. DOI: 10.1016/S1872-5805(24)60849-8
Citation: FAN Ya-feng, YI Zong-lin, ZHOU Yi, XIE Li-jing, SUN Guo-hua, WANG Zhen-bing, Huang Xian-hong, SU Fang-yuan, CHEN Cheng-meng. Revealing the correlation of high-frequency performance of supercapacitors with doped nitrogen species[J]. New Carbon Mater.. DOI: 10.1016/S1872-5805(24)60849-8

氮掺杂构型对超级电容器高频响应的影响机制

Revealing the correlation of high-frequency performance of supercapacitors with doped nitrogen species

  • 摘要: 氮掺杂炭材料已被广泛用于增强超级电容器的高频响应能力。然而,不同氮构型在高频下的电荷存储和离子响应机制仍不清楚。本研究以具有开放结构的三聚氰胺泡沫炭为简化模型材料,全面分析了N掺杂构型对超级电容器高频响应行为的影响。结合实验结果和第一性原理计算,发现具有较高吸附能的吡咯氮可以增强高频下炭电极的电荷存储能力。而具有较低吸附能的石墨氮则有助于离子在高频下的快速响应。此外,提出吸附能可作为高频下电极/电解液界面设计的描述符,这为优化氮掺杂炭材料的高频性能提供了更普适的方法。这些结果为开发用于高频超级电容器的氮掺杂炭电极材料提供了指导。

     

    Abstract: Nitrogen doping strategy has been widely used to enhance the performance of carbon electrodes in supercapacitors, particularly in terms of high-frequency response. However, the charge storage and ion response mechanisms of different nitrogen dopants at high frequencies are still unclear. In this study, we employ carbonized melamine foam with an open surface structure as a simplified model electrode material, enabling a comprehensive analysis of their impact on the ionic response behavior of high-frequency supercapacitors. Through a combination of experiments and first-principles calculations, we uncover that pyrrolic nitrogen, characterized by a higher adsorption energy, enhances the charge storage capacity of the electrode at high frequencies. On the other hand, graphitic nitrogen, with a lower adsorption energy, promotes rapid ion response. Furthermore, we propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications, offering a more universal approach for optimizing the performance of N-doped carbon materials. This research contributes to the advancement of high-frequency supercapacitor technology and provides guidance for the development of improved N-doped carbon materials.

     

/

返回文章
返回