留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RGO@SiC porous films based multilayer electromagnetic shields

LI Jing Qi Yi-quan ZHAO Shi-xiang QIU Han-xun YANG Jun-he YANG Guang-zhi

李静, 祁奕铨, 赵诗翔, 邱汉迅, 杨俊和, 杨光智. 基于还原氧化石墨烯与碳化硅的多孔电磁屏蔽薄膜及其多层结构. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60855-3
引用本文: 李静, 祁奕铨, 赵诗翔, 邱汉迅, 杨俊和, 杨光智. 基于还原氧化石墨烯与碳化硅的多孔电磁屏蔽薄膜及其多层结构. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60855-3
LI Jing, Qi Yi-quan, ZHAO Shi-xiang, QIU Han-xun, YANG Jun-he, YANG Guang-zhi. RGO@SiC porous films based multilayer electromagnetic shields. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60855-3
Citation: LI Jing, Qi Yi-quan, ZHAO Shi-xiang, QIU Han-xun, YANG Jun-he, YANG Guang-zhi. RGO@SiC porous films based multilayer electromagnetic shields. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60855-3

基于还原氧化石墨烯与碳化硅的多孔电磁屏蔽薄膜及其多层结构

doi: 10.1016/S1872-5805(24)60855-3
详细信息
    通讯作者:

    李 静,博士,教授. E-mail:lijing6080@usst.edu.cn

    杨光智,博士,教授. E-mail:yanggzh@usst.edu.cn

RGO@SiC porous films based multilayer electromagnetic shields

More Information
  • 摘要: 轻质柔性的电磁屏蔽薄膜材料的开发具有重要的意义。本文报道了一种还原氧化石墨烯与碳化硅(RGO@SiC)的多孔状电磁屏蔽薄膜,其多孔结构由3秒钟固态微波处理高效获得,该处理能高效还原氧化石墨烯,同时使薄膜厚度从大约20微米增加至200微米。当该薄膜的电磁屏蔽效能达到35.6dB时,其反射效能仅为 2.8 dB。SiC晶须在薄膜中的添加有利于电磁波的多次反射、界面极化和介电衰减。进一步,将RGO@SiC多孔薄膜按照透过层到反射层的顺序叠加,构建多层复合薄膜,并采用多壁碳纳米管纸作为反射层。当多层结构厚度为1.5毫米时,最高电磁屏蔽效能达到75.1 dB,其中反射效能仍保持在2.7 dB。我们相信该多孔状RGO@SiC 薄膜可用于设计以吸收为主的电磁屏蔽多层封装材料或三明治结构的芯层。
  • Figure  1.  Fabrication procedure of RGO@SiC/buckypaper multilayer composites

    Figure  2.  FTIR spectra of (a) SiC whiskers before and after silanization, (b) FTIR spectra, (c) XRD patterns, (d) XPS spectra, (e) Raman spectra and (f) TGA results of GO and RGO@SiC thin films

    Figure  3.  Cross-section morphology of RGO/SiC0, RGO/SiC1, RGO/SiC2 and RGO/SiC3 thin films (a-d) before and (e-f) after microwave irradiation

    Figure  4.  Electrical conductivity of RGO@SiC thin films before and after microwave irradiation

    Figure  5.  (a) SET, (b) SEA, (c) SER and (d) average SE values of the RGO@SiC thin films before the microwave irradiation

    Figure  6.  (a) SET, (b) SEA, (c) SER and (d) average SE values of the RGO@SiC thin films after the microwave irradiation

    Figure  7.  Morphology of (a) RGO@SiC2/3/4 stacking layers by WPU adhesives, (b) MWCNT buckypaper, and (c) multilayer composites of RGO@SiC4/3/2 and buckypaper as the reflection layers

    Figure  8.  (a) SET, (b) SEA, (c) SER and (d) average SE values for all the stacking sequence of the three RGO@SiC layers

    Figure  9.  (a) EMI SE of MWCNT buckypaper; (b) SET and (c) average SE values of the two layers and four layers composites with incident waves from top and bottom

    Figure  10.  (a) Mechanism schematics for EMI shielding in the multilayer composites; (b) average values of R and A for the multilayer composites with incident waves from top and bottom

    Table  1.   FWHM, crystal size, C/O ratio, ID/IG, surface area and average pore size of the RGO@SiC thin films

    SamplesFWHM (degree)Crystal size (nm)C/OID∶IGWeight loss at 800°CSurface area (m2/g)Pore size (nm)
    GO\\2.30.9776.1%\\
    RGO/SiC03.4442.3716.81.2049.0%24.289.24
    RGO/SiC12.7702.9487.01.2239.9%20.8913.53
    RGO/SiC22.7262.9937.11.2825.7%15.0618.15
    RGO/SiC32.1853.7427.81.4017.4%12.8716.85
    RGO/SiC42.3943.4107.61.4415.2%8.1828.89
    下载: 导出CSV
  • [1] Wang YY, Zhang F, Li N, et al. Carbon-based aerogels and foams for electromagnetic interference shielding: A review[J]. Carbon,2023,205:10-26. doi: 10.1016/j.carbon.2023.01.007
    [2] Li W, Gao M, Miao Y, et al. Recent progress in increasing the electromagnetic wave absorption of carbon-based materials[J]. New Carbon Mater.,2023,38:111-129. doi: 10.1016/S1872-5805(23)60703-6
    [3] Zhang F, Li C, Zhang Y, et al. Facile preparation of large-scale expanded graphite/polydimethylsiloxane composites for highly-efficient electromagnetic interference shielding[J]. J. Mater. Chem. A,2022,10:23145. doi: 10.1039/D2TA06263A
    [4] Xia T, Cao JY, Bissett MA, et al. Graphenization of graphene oxide films for strongly anisotropic thermal conduction and high electromagnetic interference shielding[J]. Carbon,2023,215:118496. doi: 10.1016/j.carbon.2023.118496
    [5] Tahalyani J, Akhtar MJ, Kar KK. Flexible, stretchable, and thin films based on functionalized carbon nanofiber/graphene nanostructures for electromagnetic interference shielding[J]. ACS Appl. Nano Mater.,2023,6:8178-8191. doi: 10.1021/acsanm.3c00215
    [6] Wu Y, Wang Z, Liu X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding[J]. ACS Appl. Mater. Interfaces,2017,9:9059-9069. doi: 10.1021/acsami.7b01017
    [7] Wan YJ, Zhu PL, Yu SH, et al. Graphene paper for exceptional EMI shielding performance using large-sized graphene oxide sheets and doping strategy[J]. Carbon,2017,122:74-81. doi: 10.1016/j.carbon.2017.06.042
    [8] Kumar N, Kuanr BK. Single and double-layered tri-band microwave absorbing materials[J]. Ceram. Int.,2023,49:32458-32469. doi: 10.1016/j.ceramint.2023.07.204
    [9] Duan Y, Xiao Z, Yan X, et al. Enhanced electromagnetic microwave absorption property of peapod-like MnO@carbon nanowires[J]. ACS Appl. Mater. Interfaces,2018,10:40078-40087. doi: 10.1021/acsami.8b11395
    [10] Zhao Y, Zhang Y, Yang C, et al. Ultralight and flexible SiC nanoparticle-decorated carbon nanofiber mats for broad-band microwave absorption[J]. Carbon,2021,171:474-483. doi: 10.1016/j.carbon.2020.09.040
    [11] Dong S, Zhang X, Li X, et al. SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption[J]. Chem. Eng. J.,2020,392:123817. doi: 10.1016/j.cej.2019.123817
    [12] Cai Y, Li Y, Huang S, et al. Broadband electromagnetic shielding performance of carbon nanotube-carbon fibre/silicon carbide cross-scale laminated composites[J]. Ceram. Int.,2022,48:26177-26187. doi: 10.1016/j.ceramint.2022.05.299
    [13] Ma L, Hamidinejad M, Liang C, et al. Enhanced electromagnetic wave absorption performance of polymer/SiC-nanowire/MXene (Ti3C2Tx) composites[J]. Carbon,2021,179:408-416. doi: 10.1016/j.carbon.2021.04.063
    [14] Liang C, Song P, Ma A, et al. Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution[J]. Compos. Sci. Technol.,2019,181:107683. doi: 10.1016/j.compscitech.2019.107683
    [15] Hu B, Guo H, Li J, et al. Dual-encapsulated phase change composites with hierarchical MXene-graphene monoliths in graphene foam for high-efficiency thermal management and electromagnetic interference shielding[J]. Compos. Part B-Eng.,2023,266:110998. doi: 10.1016/j.compositesb.2023.110998
    [16] Tang X, Luo J, Hu Z, et al. Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding[J]. Nano Research,2023,16:1755-1763. doi: 10.1007/s12274-022-4841-1
    [17] Sheng A, Ren W, Yang Y, et al. Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding[J]. Compo. Part A-Appl. S.,2020,129:105692. doi: 10.1016/j.compositesa.2019.105692
    [18] Yang J, Liao X, Wang G, et al. Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding[J]. Compos. Sci. Technol.,2021,206:108663. doi: 10.1016/j.compscitech.2021.108663
    [19] Kim M, Kim S, Seong Y C, et al. Multiwalled carbon nanotube buckypaper/polyacrylonitrile nanofiber composite membranes for electromagnetic interference shielding[J]. ACS Appl. Nano Mater.,2021,4(1):729-738. doi: 10.1021/acsanm.0c03040
    [20] Hu Y, Li D, Wu L, et al. Carbon nanotube buckypaper and buckypaper/polypropylene composites or high shielding effectiveness and absorption-dominated shielding material[J]. Compos. Sci. Technol.,2019,181:107699. doi: 10.1016/j.compscitech.2019.107699
    [21] Jiang WS, Yang C, Chen GX, et al. Preparation of high-quality graphene using triggered microwave reduction under an air atmosphere[J]. J. Mater. Chem. C,2018,6(7):1829-1835. doi: 10.1039/C7TC03957C
    [22] Sun Y, Qiu S, Fang Z, et al. Rapid synthesis of oxygen-deficient MoO3-x-rGO composites for synergistic photothermal seawater desalination and photocatalytic sterilization[J]. ACS Sustainable Chem. Eng.,2023,11:3359-3369. doi: 10.1021/acssuschemeng.2c06417
    [23] Voiry D, Yang J, Kupferberg J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science,2016,353:1413-1416. doi: 10.1126/science.aah3398
    [24] Hu H, Zhao Z, Zhou Q, et al. The role of microwave absorption on formation of graphene from graphite oxide[J]. Carbon,2012,50:3267-3273. doi: 10.1016/j.carbon.2011.12.005
    [25] Tamang S, Aravindan S. 3D numerical modelling of microwave heating of SiC susceptor[J]. Appl. Therm. Eng.,2019,162:114250. doi: 10.1016/j.applthermaleng.2019.114250
    [26] Yang W, Yan L, Jiang B, et al. Crumpled nitrogen-doped porous carbon nanosheets derived from petroleum pitch for high-performance and flexible electromagnetic wave absorption [J], Ind. Eng. Chem. Res. , 2022, 61: 2799−2808.
    [27] Yang W, Jiang B, Che S, et al. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms[J]. New Carbon Mater.,2021,36:1016-1033. doi: 10.1016/S1872-5805(21)60095-1
    [28] Yang W, Bai H, Jiang B, et al. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding[J]. Nano Res.,2022,15:9926-9935. doi: 10.1007/s12274-022-4414-3
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  16
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 录用日期:  2024-04-19
  • 修回日期:  2024-04-19
  • 网络出版日期:  2024-04-25

目录

    /

    返回文章
    返回