留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of high-concentration processing, densification, and applications of graphene oxide and graphene

WANG Yue LUO Jia-liang LU Zhe-hong DI Jun WANG Su-wei JIANG Wei

王悦, 罗家亮, 鲁哲宏, 狄俊, 王苏炜, 姜炜. 氧化石墨烯和石墨烯的高浓度加工、致密化及应用. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60856-5
引用本文: 王悦, 罗家亮, 鲁哲宏, 狄俊, 王苏炜, 姜炜. 氧化石墨烯和石墨烯的高浓度加工、致密化及应用. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60856-5
WANG Yue, LUO Jia-liang, LU Zhe-hong, DI Jun, WANG Su-wei, JIANG Wei. A review of high-concentration processing, densification, and applications of graphene oxide and graphene. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60856-5
Citation: WANG Yue, LUO Jia-liang, LU Zhe-hong, DI Jun, WANG Su-wei, JIANG Wei. A review of high-concentration processing, densification, and applications of graphene oxide and graphene. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60856-5

氧化石墨烯和石墨烯的高浓度加工、致密化及应用

doi: 10.1016/S1872-5805(24)60856-5
基金项目: 中国博士后科学基金(2021M690134);江苏省自然科学基金(BK20210353);中央高校基本科研业务费项目(30920041106);国家自然科学基金(22005144、22005145和52203023)
详细信息
    通讯作者:

    王苏炜, 讲师. E-mail:wangsw90@163.com

    姜 炜, 教授. E-mail:superfine_jw@126.com

  • 中图分类号: TB33

A review of high-concentration processing, densification, and applications of graphene oxide and graphene

Funds: This work was financially supported by the China Postdoctoral Science Foundation (2021M690134), the Natural Science Foundation of Jiangsu Province (BK20210353), the Fundamental Research Funds for the Central Universities (30920041106), and the National Natural Science Foundation of China (22005144, 22005145, 52203023)
More Information
  • 摘要: 由紧密堆叠的石墨烯片组成的致密石墨烯组件具有出色的化学稳定性和优异的机械、热学和电学性能。致密石墨烯组件不存在多孔石墨烯气凝胶中密度低、力学强度低、导电性差和导热性差的问题,是未来便携式电子和智能设备的理想材料。在此,我们对制备方法进行了总结,包括,利用机械分散、蒸发浓缩、离心浓缩和液相剥离法获得的高浓度氧化石墨烯(GO)和石墨烯分散液,以及利用真空辅助过滤、界面自组装和压制成型法获得的二维(2D)致密石墨烯基薄膜和三维(3D)致密石墨烯基结构,并评估了各种方法的优缺点。此外,还总结了致密石墨烯基组件在储能、热管理和电磁干扰(EMI)屏蔽方面的应用。最后,概述了致密石墨烯组件在未来研究中面临的挑战和前景。本综述为探索和开发大规模、低成本的制造技术和面向应用的致密石墨烯组件提供了参考。
  • Figure  1.  Schematic illustration of the processing of high-concentration GO and graphene dispersions, and the densification and application of graphene-based materials (Reproduced with permission[34]. Copyright 2019, Elsevier. Reproduced with permission[57]. Copyright 2022, Wiley-VCH)

    Figure  2.  (a) Schematic diagram of GO dispersion in a solvent with electrostatic repulsion between GO sheets. (b-e) Photographs show the GO dispersion presenting different states with increasing GO content: (b) dispersion, (c) gel, (d) dough and (e) solid (Reproduced with permission[62]. Copyright 2019, Springer Nature)

    Figure  3.  Photographs showing a high-concentration hGO ink obtained by grinding without additives (Reproduced with permission[65]. Copyright 2018, Wiley-VCH)

    Figure  4.  Schematic diagram of the evaporation concentration of GO dispersions

    Figure  5.  (a) Schematic diagram of the centrifugation process of GO dispersions. (b) Photograph of ball-milling exfoliated graphene dispersion. (c) Concentrated graphene paste was obtained through centrifugation (Reproduced with permission[74]. Copyright 2018, Elsevier)

    Figure  6.  (a) Schematic diagram of the exfoliation of graphene from graphite. (b) Graphite is exfoliated, generating a graphene slurry in alkaline water. Reproduced with permission[45]. Copyright 2018, Springer Nature. (c) Schematic diagram of the fluid dynamics process used to prepare graphene ink and a photograph of the graphene inks at different concentrations. Reproduced with permission[77]. Copyright 2021, Springer Nature

    Figure  7.  (a) Schematic illustration of the synthesis of R-rGO and F-rGO films. (b) 2D SAXS pattern. The insets show the SEM images of the cross-section of rGO films. Scale bars: 1 μm (Reproduced with permission[85]. Copyright 2022, Wiley-VCH)

    Figure  8.  (a) Schematic diagram of interfacial self-assembly. (b) Schematic illustration of the self-assembly of N/O/P-doped graphene xerogel (Reproduced with permission[96]. Copyright 2023, Elsevier). (c) Schematic diagram of the synthesis of Janus graphene film (Reproduced with permission[87]. Copyright 2012, Royal Society of Chemistry)

    Figure  9.  (a) Schematic illustration of the preparation of the dense graphitic film. Cross-sectional SEM images of (b) rG-O_0-3000C, (c) rG-O_15-3000C, (d) rG-O_0-3000C_PH and (e) rG-O_15-3000C_PH. Scale bars: 5 μm. (f) Density measurements of samples (Reproduced with permission[91]. Copyright 2020, Elsevier)

    Figure  10.  (a) Schematic illustration of the synthesis of 3DPNG. (b) Photographs and SEM images of 3DPNG and 3DPG electrodes (Reproduced with permission[57]. Copyright 2022, Wiley-VCH). (c) Schematic diagram of the synthesis of CGM. (d-g) SEM images of CGM. Scale bars: (d, e) 200 mm, (f) 10 mm and (g) 1 mm (Reproduced with permission[99]. Copyright 2020, Elsevier)

    Figure  11.  (a) Photographs of h-graphene and h-graphene monoliths. SEM images for (b) graphene and (c) h-graphene. Photographs of (d) graphene and (e) h-graphene monoliths under identical conditions. Cross-sectional SEM images of (f) graphene and (g) h-graphene monoliths. (h) Plot of the density for hG4, hG30, and hG55 monoliths as a function of applied weight (Reproduced with permission[25]. Copyright 2017, American Chemical Society)

    Figure  12.  (a) Schematic diagram of the synthesis of (a) monolayer MXene and (b) RGM-H2SO4 films. (c) SEM images of the RGM-H2SO4 film. (d) Schematic diagram of the ion transport channel in RGM-H2SO4 films. (e) Volumetric capacitance at 10 mV·s−1. (f) Cycling performance and Coulombic efficiency of RGM30-H2SO4-based symmetric supercapacitor at 2 A·cm−3 for 8000 cycles (Reproduced with permission[115]. Copyright 2020, Springer Nature)

    Figure  13.  Cross-sectional SEM images of (a, b) HATiO2-G and (c, d) VATiO2-G electrodes. Schematic diagrams of ion transport behaviors in (e) HATiO2-G and (f) VATiO2-G electrodes. (g) Rate performance. (h) Comparison of areal and volumetric capacities at different current densities (Reproduced with permission[119]. Copyright 2021, Elsevier)

    Figure  14.  (a) Schematic diagram of GO/C and gGC-2800 films. SEM images of (b, c) GO/C and (d, e) gGC-2800 films. (f) Thermal conduction mechanism of the hybrid film. (g) Thermal conductivity of the hybrid film (Reproduced with permission[84]. Copyright 2021, Elsevier)

    Figure  15.  (a) Schematic diagram of the synthesis of the CNT/GO film. (b-d) Cross-sectional SEM images of the CNT/RGO films. (e) Schematic of electromagnetic wave transmission. (f) The EMI SE of the CNT/RGO film (Reproduced with permission[89]. Copyright 2012, Royal Society of Chemistry)

    Table  1.   Preparation methods and concentrations (>25 mg·mL−1) of GO and graphene dispersions

    MaterialsMethodsConcentration/(mg·mL−1)Ref.
    GOMechanical dispersion40[64]
    Holey GOMechanical dispersion≈ 100[65]
    GOMechanical dispersion80[66]
    GOMechanical dispersion85[67]
    GOEvaporation25-1600[68]
    GO/CBEvaporation100[69]
    GOEvaporation150[69]
    GO/CNTsEvaporation≈ 180[70]
    GO/NFCEvaporation≈ 90[70]
    GrapheneEvaporation200[71]
    GrapheneEvaporation70[72]
    GOCentrifugal50[73]
    GrapheneCentrifugal46[74]
    GrapheneLiquid phase exfoliation25[17]
    GrapheneLiquid phase exfoliation39[75]
    GrapheneLiquid phase exfoliation50[45]
    GrapheneLiquid phase exfoliation35[76]
    GrapheneLiquid phase exfoliation48[77]
    下载: 导出CSV

    Table  2.   Methods and densities of dense graphene-based materials

    TypesMaterialsMethodsDensity/(g·cm−3)Ref.
    2D filmsRGOVacuum filtration1.68[83]
    RGO/CNTsVacuum filtration0.56[84]
    G/CNTsVacuum filtration0.94[84]
    R-rGOVacuum filtration1.58[85]
    F-rGOVacuum filtration1.23[85]
    GrapheneVacuum filtration1.72[86]
    Janus grapheneInterfacial self-assembly[87]
    DA/rGO/PDAInterfacial self-assembly1.72[88]
    CNC/rGOInterfacial self-assembly[89]
    Graphene paperCold-pressing1.85[90]
    Graphitic filmCold-pressing2.0, 2.27[91]
    GrapheneCold-pressing1.93-2.03[30]
    Graphene/CCold-pressing1.40[92]
    G/CNTsHot-pressing1.34[93]
    GO/grapheneHot-pressing1.0-1.60[94]
    POM-GFsHot-pressing1.68[95]
    3D
    architectures
    3DPNGInterfacial self-assembly0.32[57]
    Ethyl-NPGXInterfacial self-assembly1.53[96]
    Graphene monolithInterfacial self-assembly1.50[97]
    Graphene monolithInterfacial self-assembly1.38[98]
    Graphene microlatticeInterfacial self-assembly0.40-1.0[99]
    Graphene monolithCold-pressing1.40[25]
    Graphene monolithCold-pressing0.77[100]
    下载: 导出CSV
  • [1] Chen Y N, Wang Y L, Zhu S Z, et al. Nanomanufacturing of graphene nanosheets through nano-hole opening and closing[J]. Materials Today,2019,24:26-32. doi: 10.1016/j.mattod.2018.09.001
    [2] Qiu L, Liu J Z, Chang S L, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nature Communications,2012,3:1241. doi: 10.1038/ncomms2251
    [3] Ma J H, Wang P, Dong L, et al. Highly conductive, mechanically strong graphene monolith assembled by three-dimensional printing of large graphene oxide[J]. Journal of Colloid and Interface Science,2019,534:12-19. doi: 10.1016/j.jcis.2018.08.096
    [4] Gao Y, Zhai Y J, Wang G T, et al. 3D-laminated graphene with combined laser irradiation and resin infiltration toward designable macrostructure and multifunction[J]. Advanced Science,2022,9:2200362. doi: 10.1002/advs.202200362
    [5] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [6] Wan Z F, Nguyen N T, Gao Y S, et al. Laser induced graphene for biosensors[J]. Sustainable Materials and Technologies,2020,25:00205.
    [7] Silva V, Fernandes-Junior W S, Rocha D P, et al. 3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications[J]. Biosensors and Bioelectronics,2020,170:112684. doi: 10.1016/j.bios.2020.112684
    [8] Min P, Li X F, Liu P F, et al. Rational design of soft yet elastic lamellar graphene aerogels via bidirectional freezing for ultrasensitive pressure and bending sensors[J]. Advanced Functional Materials,2021,31(34):2103703. doi: 10.1002/adfm.202103703
    [9] Zang W Z, Liu Z, Kulkarni G S, et al. A microcolumn DC graphene sensor for rapid, sensitive, and universal chemical vapor detection[J]. Nano Letters,2021,21(24):10301-10308. doi: 10.1021/acs.nanolett.1c03416
    [10] Zhang H H, Yang D, Lau A, et al. Hybridized graphene for supercapacitors: Beyond the limitation of pure graphene[J]. Small,2021,17(12):2007311. doi: 10.1002/smll.202007311
    [11] Tao Y, Xie X Y, Lv W, et al. Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports,2013,3:2975. doi: 10.1038/srep02975
    [12] Qin K Q, Baucom J, Diao L C, et al. Compacted N-doped 3D bicontinuous nanoporous graphene/carbon nanotubes@Ni-doped MnO2 electrode for ultrahigh volumetric performance all-solid-state supercapacitors at wide temperature range[J]. Small,2022,18(33):2203166. doi: 10.1002/smll.202203166
    [13] Yang J, Hubner R, Zhang J W, et al. A robust PtNi nanoframe/N-doped graphene aerogel electrocatalyst with both high activity and stability[J]. Angewandte Chemie International Edition,2021,60(17):9590-9597. doi: 10.1002/anie.202015679
    [14] Li Y, Jiang K Y, Yang J, et al. Tungsten oxide/reduced graphene oxide aerogel with low-content platinum as high-performance electrocatalyst for hydrogen evolution reaction[J]. Small,2021,17(37):2102159. doi: 10.1002/smll.202102159
    [15] Yu X M, Han P, Wei Z X, et al. Boron-doped graphene for electrocatalytic N2 reduction[J]. Joule,2018,2(8):1610-1622. doi: 10.1016/j.joule.2018.06.007
    [16] Lin Y, Kang Q, Wei H, et al. Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management[J]. Nano-Micro Letters,2021,13(1):180. doi: 10.1007/s40820-021-00702-7
    [17] Chen H Q, Zhang Y J, Ma Y, et al. Sand-milling exfoliation of structure controllable graphene for formulation of highly conductive and multifunctional graphene inks[J]. Advanced Materials Interfaces,2020,8(1):2000888.
    [18] Ge Q, Chu J W, Cao W Q, et al. Graphene-based textiles for thermal management and flame retardancy[J]. Advanced Functional Materials,2022,32(42):2205934. doi: 10.1002/adfm.202205934
    [19] Ning G Q, Ma X L, Wang M Y, et al. High capacity oil adsorption by graphene capsules[J]. Nanoscale,2017,9(34):12647-12651. doi: 10.1039/C7NR04383J
    [20] Han M Y, Xu B H, Zhang M R, et al. Preparation of biologically reduced graphene oxide-based aerogel and its application in dye adsorption[J]. Science of the Total Environment,2021,783:147028. doi: 10.1016/j.scitotenv.2021.147028
    [21] Li J J, Li X G, Zhang X Y, et al. Development of graphene aerogels with high strength and ultrahigh adsorption capacity for gas purification[J]. Materials & Design,2021,208:109903.
    [22] Li P, Yang M C, Liu Y J, et al. Continuous crystalline graphene papers with gigapascal strength by intercalation modulated plasticization[J]. Nature Communications,2020,11(1):2645. doi: 10.1038/s41467-020-16494-0
    [23] Zeng H X, Wu J Y, Ma Y P, et al. Scalable approach to construct self-assembled graphene-based films with an ordered structure for thermal management[J]. ACS Applied Materials & Interfaces,2018,10(48):41690-41698.
    [24] Chen X J, Deng X M, Kim N Y, et al. Graphitization of graphene oxide films under pressure[J]. Carbon,2018,132:294-303. doi: 10.1016/j.carbon.2018.02.049
    [25] Han X G, Yang Z, Zhao B, et al. Compressible, dense, three-dimensional holey graphene monolithic architecture[J]. ACS Nano,2017,11(3):3189-3197. doi: 10.1021/acsnano.7b00227
    [26] Zhou G X, Yu Y G, Yang Z H, et al. 3D printing graphene oxide soft robotics[J]. ACS Nano,2022,16(3):3664-3673. doi: 10.1021/acsnano.1c06823
    [27] Yang X, Cheng C, Wang Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science,2013,341(6145):534-537. doi: 10.1126/science.1239089
    [28] Qi C S, Luo C, Tao Y, et al. Capillary shrinkage of graphene oxide hydrogels[J]. Science China Materials,2019,63(10):1870-1877.
    [29] Zhuang Y F, Zheng K, Cao X Y, et al. Flexible graphene nanocomposites with simultaneous highly anisotropic thermal and electrical conductivities prepared by engineered graphene with flat morphology[J]. ACS Nano,2020,14(9):11733-11742. doi: 10.1021/acsnano.0c04456
    [30] Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials,2017,29(27):1700589. doi: 10.1002/adma.201700589
    [31] Huang H B, Zhou F, Shi X Y, et al. Graphene aerogel derived compact films for ultrafast and high-capacity aluminum ion batteries[J]. Energy Storage Materials,2019,23:664-669. doi: 10.1016/j.ensm.2019.03.001
    [32] Yang W, Bai H X, Jiang B, et al. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding[J]. Nano Research,2022,15(11):9926-9935. doi: 10.1007/s12274-022-4414-3
    [33] Guo Y, Dun C C, Xu J W, et al. Ultrathin, washable, and large-area graphene papers for personal thermal management[J]. Small,2017,13(44):1702645. doi: 10.1002/smll.201702645
    [34] Wan S J, Chen Y, Wang Y L, et al. Ultrastrong graphene films via long-chain π-bridging[J]. Matter,2019,1(2):389-401. doi: 10.1016/j.matt.2019.04.006
    [35] Yao K, Xu Z W, Ma M, et al. Densified metallic MoS2/graphene enabling fast potassium-ion storage with superior gravimetric and volumetric capacities[J]. Advanced Functional Materials,2020,30(24):2001484. doi: 10.1002/adfm.202001484
    [36] Han J W, Kong D B, Lv W, et al. Caging tin oxide in three-dimensional graphene networks for superior volumetric lithium storage[J]. Nature Communications,2018,9(1):402. doi: 10.1038/s41467-017-02808-2
    [37] Fu C, Li M J, Li H J, et al. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application[J]. Materials Science and Engineering C,2017,72:425-432. doi: 10.1016/j.msec.2016.11.089
    [38] Liu Z G, Zhu J L, Lu D Z, et al. Fabricating ultrathick, dense electrodes for compact rechargeable batteries with ultrahigh areal and volumetric capacity[J]. Journal of Power Sources,2022,523:231046. doi: 10.1016/j.jpowsour.2022.231046
    [39] Qin L, Zhai D Y, Lv W, et al. Dense graphene monolith oxygen cathodes for ultrahigh volumetric energy densities[J]. Energy Storage Materials,2017,9:134-139. doi: 10.1016/j.ensm.2017.06.003
    [40] Wang P, Chen H S, Li N, et al. Dense graphene papers: Toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density[J]. Energy Storage Materials,2018,13:103-111. doi: 10.1016/j.ensm.2018.01.001
    [41] Wang Z G, Lv J C, Zheng Z L, et al. Highly thermally conductive graphene-based thermal interface materials with a bilayer structure for central processing unit cooling[J]. ACS Applied Materials & Interfaces,2021,13(21):25325-25333.
    [42] Vu M C, Kim I H, Choi W K, et al. Highly flexible graphene derivative hybrid film: An outstanding nonflammable thermally conductive yet electrically insulating material for efficient thermal management[J]. ACS Applied Materials & Interfaces,2020,12(23):26413-26423.
    [43] Pang K, Liu X T, Liu Y J, et al. Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding[J]. Carbon,2021,179:202-208. doi: 10.1016/j.carbon.2021.04.027
    [44] Fan C, Wu B, Song R G, et al. Electromagnetic shielding and multi-beam radiation with high conductivity multilayer graphene film[J]. Carbon,2019,155:506-513. doi: 10.1016/j.carbon.2019.09.019
    [45] Dong L, Chen Z X, Zhao X X, et al. A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water[J]. Nature Communications,2018,9(1):76. doi: 10.1038/s41467-017-02580-3
    [46] Zhang Y Y, Wan Q J, Yang N J. Recent advances of porous graphene: Synthesis, functionalization, and electrochemical applications[J]. Small,2019,15(48):1903780. doi: 10.1002/smll.201903780
    [47] Tang P P, Deng Z M, Zhang Y, et al. Tough, strong, and conductive graphene fibers by optimizing surface chemistry of graphene oxide precursor[J]. Advanced Functional Materials,2022,32(28):2112156. doi: 10.1002/adfm.202112156
    [48] Pei S F, Zhao J P, Du J H, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon,2010,48(15):4466-4474. doi: 10.1016/j.carbon.2010.08.006
    [49] Alayande A B, Park H D, Vrouwenvelder J S, et al. Implications of chemical reduction using hydriodic acid on the antimicrobial properties of graphene oxide and reduced graphene oxide membranes[J]. Small,2019,15(28):1901023. doi: 10.1002/smll.201901023
    [50] Renteria J D, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials,2015,25(29):4664-4672. doi: 10.1002/adfm.201501429
    [51] Ma W J, Li W F, Li M, et al. Unzipped carbon nanotube/graphene hybrid fiber with less "dead volume" for ultrahigh volumetric energy density supercapacitors[J]. Advanced Functional Materials,2021,31(19):2100195. doi: 10.1002/adfm.202100195
    [52] Zhang X, Wang A P, Zhou X Y, et al. Fabrication of aramid nanofiber-wrapped graphene fibers by coaxial spinning[J]. Carbon,2020,165:340-348. doi: 10.1016/j.carbon.2020.04.072
    [53] Li W P, Chen C, Liu X H, et al. Continuous graphene oxide nanolayer arranged on hydrophilic modified polytetrafluoroethylene substrate to construct high performance proton exchange membranes[J]. Journal of Membrane Science,2022,661:120838. doi: 10.1016/j.memsci.2022.120838
    [54] Qian M, Yan X, Chen Y, et al. Covalent organic framework membrane on electrospun polyvinylidene fluoride substrate with a hydrophilic intermediate layer[J]. Journal of Colloid and Interface Science,2022,622:11-20. doi: 10.1016/j.jcis.2022.04.049
    [55] Luo R, Li Z P, Wu X Z, et al. Super durable graphene aerogel inspired by deep-sea glass sponge skeleton[J]. Carbon,2022,191:153-163. doi: 10.1016/j.carbon.2022.01.055
    [56] Xu J, Shu R W, Wan Z L, et al. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption[J]. Journal of Materials Science & Technology,2023,132:193-200.
    [57] Li X L, Ling S W, Cao W Q, et al. Surface-adaptive capillarity enabling densified 3D printing for ultra-high areal and volumetric energy density supercapacitors[J]. Angewandte Chemie International Edition,2022,61(24):202202663. doi: 10.1002/anie.202202663
    [58] Ahmad R T M, Hong S H, Shen T Z, et al. Water-assisted stable dispersal of graphene oxide in non-dispersible solvents and skin formation on the GO dispersion[J]. Carbon,2016,98:188-194. doi: 10.1016/j.carbon.2015.11.007
    [59] Zhang Q Q, Zhang F, Medarametla S P, et al. 3D printing of graphene aerogels[J]. Small,2016,12(13):1702-1708. doi: 10.1002/smll.201503524
    [60] Mir A, Shukla, A. Bilayer-rich graphene suspension from electrochemical exfoliation of graphite[J]. Materials & Design,2018,156:62-70.
    [61] Peng M W, Wen Z, Xie L J, et al. 3D printing of ultralight biomimetic hierarchical graphene materials with exceptional stiffness and resilience[J]. Advanced Materials,2019,31(35):1902930. doi: 10.1002/adma.201902930
    [62] Yeh C N, Huang H Y, Lim A T O, et al. Binder-free graphene oxide doughs[J]. Nature Communications,2019,10(1):422. doi: 10.1038/s41467-019-08389-6
    [63] Luo J L, Yang L W, Sun D P, et al. Graphene oxide "surfactant"-directed tunable concentration of graphene dispersion[J]. Small,2020,16(45):2003426. doi: 10.1002/smll.202003426
    [64] Zhu C, Han T Y, Duoss E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications,2015,6:6962. doi: 10.1038/ncomms7962
    [65] Lacey S D, Kirsch D J, Li Y, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes[J]. Advanced Materials,2018,30(12):1705651. doi: 10.1002/adma.201705651
    [66] Yao Y, Fu K K, Yan C, et al. Three-dimensional printable high-temperature and high-rate heaters[J]. ACS Nano,2016,10(5):5272-5279. doi: 10.1021/acsnano.6b01059
    [67] Fu K, Wang Y B, Yan C Y, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials,2016,28(13):2587-2594. doi: 10.1002/adma.201505391
    [68] Zhang T P, Yang H S, Duan Y X, et al. Arbitrary-shaped, ultrastrong, and highly conductive monoliths directly annealed by graphene oxide ionic putties for corrosion-resistant Joule heating[J]. ACS Applied Energy Materials,2022,5(8):9885-9894. doi: 10.1021/acsaem.2c01574
    [69] Li Y J, Gao T T, Yang Z, et al. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination[J]. Nano Energy,2017,41:201-209. doi: 10.1016/j.nanoen.2017.09.034
    [70] Li Y J, Gao T T, Yang Z, et al. 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination[J]. Advanced Materials,2017,29(26):1700981. doi: 10.1002/adma.201700981
    [71] Huang K, Yang J S, Dong S M, et al. Anisotropy of graphene scaffolds assembled by three-dimensional printing[J]. Carbon,2018,130:1-10. doi: 10.1016/j.carbon.2017.12.120
    [72] Pan K W, Fan Y Y, Leng T, et al. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications[J]. Nature Communications,2018,9(1):5197. doi: 10.1038/s41467-018-07632-w
    [73] Liu F Y, Dong Y B, Shi R K, et al. Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for monitoring vital signs[J]. Materials Today Communications,2020,24:100909. doi: 10.1016/j.mtcomm.2020.100909
    [74] Hu T, Song Y H, Di J T, et al. Highly thermally conductive layered polymer composite from solvent-exfoliated pristine graphene[J]. Carbon,2018,140:596-602. doi: 10.1016/j.carbon.2018.09.026
    [75] Barwich S, Coleman J N, Mobius M E. Yielding and flow of highly concentrated, few-layer graphene suspensions[J]. Soft Matter,2015,11(16):3159-3164. doi: 10.1039/C4SM02855D
    [76] Zhao H R, Xu B Y, Ding J H, et al. Natural amino acids: High-efficiency intercalants for graphene exfoliation[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):18819-18825.
    [77] Kim D S, Jeong J M, Park H J, et al. Highly concentrated, conductive, defect-free graphene ink for screen-printed sensor application[J]. Nano-Micro Letters,2021,13(1):87. doi: 10.1007/s40820-021-00617-3
    [78] Yoo J, Tahir M S, Rabani I, et al. Fabrication of multilayer film with graphene oxide of different surface charge through electrospray deposition[J]. Applied Surface Science,2022,599:153977. doi: 10.1016/j.apsusc.2022.153977
    [79] Li W, Weng C J, Yang W Z, et al. High-strength reduced graphene oxide paper prepared by a simple and efficient method[J]. Journal of Materials Science,2021,56(25):14084-14095. doi: 10.1007/s10853-021-06151-2
    [80] Du W C, Jiang X Q, Zhu L H. From graphite to graphene: Direct liquid-phase exfoliation of graphite to produce single- and fewlayered pristine graphene[J]. Journal of Materials Chemistry A,2013,1:10592-10606. doi: 10.1039/c3ta12212c
    [81] Tyurnina A V, Morton J A, Kaur A, et al. Effects of green solvents and surfactants on the characteristics of few-layer graphene produced by dual-frequency ultrasonic liquid phase exfoliation technique[J]. Carbon,2023,206:7-15. doi: 10.1016/j.carbon.2023.01.062
    [82] Zheng N B, Wang L, Wan M H, et al. Experimental investigation on the static and dynamic stability of water-based graphene nanofluids prepared by one-step liquid phase shear exfoliation of graphite[J]. Journal of Molecular Liquids,2023,381:121848. doi: 10.1016/j.molliq.2023.121848
    [83] Cao Y, Xiong Z Y, Liang Q H, et al. Subnanometric stacking of two-dimensional nanomaterials: insights from the nanotexture evolution of dense reduced graphene oxide membranes[J]. ACS Nano,2023,17(5):5072-5082. doi: 10.1021/acsnano.3c00155
    [84] Jia H, Kong Q Q, Yang X, et al. Dual-functional graphene/carbon nanotubes thick film: Bidirectional thermal dissipation and electromagnetic shielding[J]. Carbon,2021,171:329-340. doi: 10.1016/j.carbon.2020.09.017
    [85] Cao Y, Xiong Z Y, Xia F, et al. New structural insights into densely assembled reduced graphene oxide membranes[J]. Advanced Functional Materials,2022,32(42):2201535. doi: 10.1002/adfm.202201535
    [86] Zou R, Liu F, Hu N, et al. Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity[J]. Carbon,2019,149:173-180. doi: 10.1016/j.carbon.2019.04.038
    [87] Song Z Q, Fan Y Y, Sun Z H, et al. A new strategy for integrating superior mechanical performance and high volumetric energy density into a Janus graphene film for wearable solid-state supercapacitors[J]. J. Mater. Chem. A,2017,5(39):20797-20807. doi: 10.1039/C7TA06040H
    [88] Huang C, Tang Q L, Feng Q S, et al. Achieving ultrahigh volumetric performance of graphene composite films by an outer-inner dual space utilizing strategy[J]. Journal of Materials Chemistry A,2020,8(19):9661-9669. doi: 10.1039/C9TA13585E
    [89] Jin K X, Xing J X, Liu X G, et al. Manipulating the assembly of the CNC/RGO composite film for superior electromagnetic interference shielding properties[J]. Journal of Materials Chemistry A,2021,9(47):26999-27009. doi: 10.1039/D1TA08147K
    [90] Xu F, Chen R F, Lin Z S, et al. Variable densification of reduced graphene oxide foam into multifunctional high-performance graphene paper[J]. Journal of Materials Chemistry C,2018,6(45):12321-12328. doi: 10.1039/C8TC04008G
    [91] Akbari A, Cunning B V, Joshi S R, et al. Highly ordered and dense thermally conductive graphitic films from a graphene oxide/reduced graphene oxide mixture[J]. Matter,2020,2(5):1198-1206. doi: 10.1016/j.matt.2020.02.014
    [92] Díez N, Qiao M, Gómez-Urbano J L, et al. High density graphene-carbon nanosphere films for capacitive energy storage[J]. Journal of Materials Chemistry A,2019,7(11):6126-6133. doi: 10.1039/C8TA12050A
    [93] Chao Y Z, Chen S B, Chen H Q, et al. Densely packed porous graphene film for high volumetric performance supercapacitor[J]. Electrochimica Acta,2018,276:118-124. doi: 10.1016/j.electacta.2018.04.156
    [94] Wang S S, Sun X X, Xu F, et al. Strong yet tough graphene/graphene oxide hybrid films[J]. Carbon,2021,179:469-476. doi: 10.1016/j.carbon.2021.04.052
    [95] Wang S, Wang X, Sun C L, et al. Room-temperature fast assembly of 3D macroscopically porous graphene frameworks for binder-free compact supercapacitors with high gravimetric and volumetric capacitances[J]. Journal of Energy Chemistry,2021,61:23-28. doi: 10.1016/j.jechem.2021.01.019
    [96] Li Y D, Xia K S, Zhang Y, et al. Ethanol-mediated dense and N/O/P tri-doped graphene xerogel for ultrahigh volumetric capacitive energy storage[J]. Journal of Power Sources,2023,564:232869. doi: 10.1016/j.jpowsour.2023.232869
    [97] Chen X R, Han J W, Lv X H, et al. Dense yet highly ion permeable graphene electrodes obtained by capillary-drying of a holey graphene oxide assembly[J]. Journal of Materials Chemistry A,2019,7(20):12691-12697. doi: 10.1039/C9TA03698A
    [98] Xu X C, Zhao X J, Yang Z H, et al. High-density three-dimensional graphene cathode with a tailored pore structure for high volumetric capacity zinc-ion storage[J]. Carbon,2022,186:624-631. doi: 10.1016/j.carbon.2021.10.060
    [99] Wang F, Jiang Y Q, Liu Y J, et al. Liquid crystalline 3D printing for superstrong graphene microlattices with high density[J]. Carbon,2020,159:166-174. doi: 10.1016/j.carbon.2019.12.039
    [100] Dai W, Ma T F, Yan Q W, et al. Metal-level thermally conductive yet soft graphene thermal interface materials[J]. ACS Nano,2019,13(10):11561-11571. doi: 10.1021/acsnano.9b05163
    [101] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,44:457-460.
    [102] Niu X H, Yuan M, Zhao R, et al. Fabrication strategies for chiral self-assembly surface[J]. Mikrochim Acta,2024,191(4):202. doi: 10.1007/s00604-024-06278-4
    [103] Shin H, Eom W, Lee K H, et al. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel[J]. ACS Nano,2021,15(2):3320-3329. doi: 10.1021/acsnano.0c10255
    [104] Moehring N K, Naclerio A E, Chaturvedi P, et al. Ultra-thin proton conducting carrier layers for scalable integration of atomically thin 2D materials with proton exchange polymers for next-generation PEMs[J]. Nanoscale, 2024.
    [105] Kim Y I, Lee Y J, Yoo J, et al. High-capacitance activated bio-carbons with controlled pore size distribution for sustainable energy storage[J]. Journal of Power Sources,2019,438:226969. doi: 10.1016/j.jpowsour.2019.226969
    [106] Yu H, Kim J G, Lee D M, et al. Active material-free continuous carbon nanotube fibers with unprecedented enhancement of physicochemical properties for fiber-type solid-state supercapacitors[J]. Advanced Energy Materials,2024,14:2303003. doi: 10.1002/aenm.202303003
    [107] Dharmasiri B, Stanfield M K, Randall J D, et al. Multifunctional polymeric surface coatings of carbon fibre electrodes for enhanced energy storage performance[J]. Chemical Engineering Journal,2022,447:137560. doi: 10.1016/j.cej.2022.137560
    [108] Chen Y S, Huang D L, Lei L, et al. Surface and interface engineering: Graphene-based freestanding electrodes for electrochemical energy storage[J]. Coordination Chemistry Reviews,2023,496:215411. doi: 10.1016/j.ccr.2023.215411
    [109] Jiang L L, Sheng L Z, Long C L, et al. Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors[J]. Nano Energy,2015,11:471-480. doi: 10.1016/j.nanoen.2014.11.007
    [110] Wu Z S, Parvez K, Li S, et al. Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors[J]. Advanced Materials,2015,27(27):4054-4061. doi: 10.1002/adma.201501643
    [111] Fan Z M, Zhu J P, Sun X H, et al. High density of free-standing holey graphene/PPy films for superior volumetric capacitance of supercapacitors[J]. ACS Applied Materials & Interfaces,2017,9(26):21763-21772.
    [112] Zhang L N, Han D L, Tao Y, et al. Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2020,8(1):461-469. doi: 10.1039/C9TA09941G
    [113] Li N, Lv T, Yao Y, et al. Compact graphene/MoS2 composite films for highly flexible and stretchable all-solid-state supercapacitors[J]. Journal of Materials Chemistry A,2017,5(7):3267-3273. doi: 10.1039/C6TA10165H
    [114] Kayali E, VahidMohammadi A, Orangi J, et al. Controlling the dimensions of 2D MXenes for ultrahigh-rate pseudocapacitive energy storage[J]. ACS Applied Materials & Interfaces,2018,10(31):25949-25954.
    [115] Zhang M, Cao J, Wang Y, et al. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors[J]. Nano Research,2020,14(3):699-706.
    [116] Byun S, Shim Y, Min Yuk J, et al. Reduced graphene oxide as a charge reservoir of manganese oxide: Interfacial interaction promotes charge storage property of MnOx-based micro-supercapacitors[J]. Chemical Engineering Journal,2022,439:135569. doi: 10.1016/j.cej.2022.135569
    [117] Li H, Tao Y, Zheng X Y, et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J]. Energy & Environmental Science,2016,9(10):3135-3142.
    [118] Lu Y, Lu Y Y, Niu Z Q, et al. Graphene-based nanomaterials for sodium-ion batteries[J]. Advanced Energy Materials,2018,8(17):1702469. doi: 10.1002/aenm.201702469
    [119] Xu C Y, Kou X D, Liu D D, et al. Vertically aligned architecture in the dense and thick TiO2-graphene nanosheet electrode towards high volumetric and areal capacities[J]. Electrochimica Acta,2021,370:137770. doi: 10.1016/j.electacta.2021.137770
    [120] Xu Y L, Wu Y X, Tang Q L, et al. Water intercalation strategy to fabricate low-potential and dense grapheme film anode for high energy density K-ion batteries[J]. Electrochimica Acta,2022,403:139626. doi: 10.1016/j.electacta.2021.139626
    [121] Chen S J, Wang Q L, Zhang M M, et al. Scalable production of thick graphene film for next generation thermal management application[J]. Carbon,2020,167:270-277. doi: 10.1016/j.carbon.2020.06.030
    [122] Zhu Y, Peng Q Y, Qin Y Y, et al. Graphene-carbon composite films as thermal management materials[J]. ACS Applied Nano Materials,2020,3(9):9076-9087. doi: 10.1021/acsanm.0c01754
    [123] Yang G, Yi H K, Yao Y G, et al. Thermally conductive graphene films for heat dissipation[J]. ACS Applied Nano Materials,2020,3(3):2149-2155. doi: 10.1021/acsanm.9b01955
    [124] Jiang Q, Wang X, Zhu Y T, et al. Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites[J]. Composites Part B: Engineering,2014,56:408-412. doi: 10.1016/j.compositesb.2013.08.064
    [125] Guo X X, Cheng S J, Yan B, et al. Free-standing graphene aerogel with improved through-plane thermal conductivity after being annealed at high temperature[J]. Journal of Colloid and Interface Science,2022,608:2407-2413. doi: 10.1016/j.jcis.2021.10.134
    [126] Zhang Y L, Ruan K P, Zhou K, et al. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding[J]. Advanced Materials,2023,35(16):2211642. doi: 10.1002/adma.202211642
    [127] Liu H Z, Xu Y, Yong H Y, et al. Studies on electromagnetic interference shielding effect mechanisms of leaf-like three-dimensional carbon nanotubes/graphene aerogel film and the composites with polydimethylsiloxane[J]. Carbon,2023,207:261-269. doi: 10.1016/j.carbon.2023.03.006
    [128] Zhu E H, Pang K, Chen Y R, et al. Ultra-stable graphene aerogels for electromagnetic interference shielding[J]. Science China Materials,2023,66:1106-1113. doi: 10.1007/s40843-022-2208-x
    [129] Yu Z, Dai T W, Yuan S W, et al. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels[J]. ACS Applied Materials & Interfaces,2020,12(27):30990-31001.
    [130] Sambyal P, Noh S J, Hong J P, et al. FeSiAl/metal core shell hybrid composite with high-performance electromagnetic interference shielding[J]. Composites Science and Technology,2019,172:66-73. doi: 10.1016/j.compscitech.2019.01.007
    [131] Ma Z N, Li J W, Zhang J J, et al. Ultrathin, flexible, and high-strength Ni/Cu/metallic glass/Cu/Ni composite with alternate magneto-electric structures for electromagnetic shielding[J]. Journal of Materials Science & Technology,2021,81:43-50.
    [132] Zhu R Q, Li Z Y, Deng G, et al. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding[J]. Nano Energy,2022,92:106700. doi: 10.1016/j.nanoen.2021.106700
    [133] Jia Y J, Ajayi T D, Roberts M A, et al. Ultrahigh-temperature ceramic-polymer-derived SiOC ceramic composites for high-performance electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2020,12(41):46254-46266.
    [134] Liu X L, Yin X W, Duan W Y, et al. Electromagnetic interference shielding properties of polymer derived SiC-Si3N4 composite ceramics[J]. Journal of Materials Science & Technology,2019,35(12):2832-2839.
    [135] Kim T, Pak S, Lim J, et al. Electromagnetic interference shielding with 2D copper sulfide[J]. ACS Applied Materials & Interfaces,2022,14(11):13499-13506.
    [136] Li C B, Li Y J, Zhao Q, et al. Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression[J]. ACS Applied Materials & Interfaces,2020,12(27):30686-30694.
    [137] Sun Z H, Yan Z Q, Yue K C, et al. Multi-scale structural nitrogen-doped rGO@CNTs composites with ultra-low loading towards microwave absorption[J]. Applied Surface Science,2021,538:147943. doi: 10.1016/j.apsusc.2020.147943
    [138] Zhang Z Y, Li Y X, Liao Y J, et al. Synthesizing CNx heterostructures on ferromagnetic nanoparticles for improving microwave absorption property[J]. Applied Surface Science,2021,564:150480. doi: 10.1016/j.apsusc.2021.150480
    [139] Mirkhani S A, Iqbal A, Kwon T, et al. Reduction of electrochemically exfoliated graphene films for high-performance electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2021,13(13):15827-15836.
    [140] Li M M, Zhang M L, Zhao Y J, et al. Multilayer structured CNF/rGO aerogels and rGO film composites for efficient electromagnetic interference shielding[J]. Carbohydrate Polymers,2022,286:119306. doi: 10.1016/j.carbpol.2022.119306
    [141] Li Y, Sun L, Xu F, et al. Electromagnetic and acoustic double-shielding graphene-based metastructures[J]. Nanoscale,2019,11(4):1692-1699. doi: 10.1039/C8NR06143B
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  16
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 录用日期:  2024-04-28
  • 修回日期:  2024-04-26
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回