留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress in carbonaceous materials based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation

Sahil Rana Amit Kumar WANG Tong-tong Gaurav Sharma Pooja Dhiman Alberto García-Penas

SahilRana, AmitKumar, WANGTong-tong, GauravSharma, PoojaDhiman, AlbertoGarcía-Penas. 基于碳质材料的Z型和S型异质结光催化清洁能源的综述. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60857-7
引用本文: SahilRana, AmitKumar, WANGTong-tong, GauravSharma, PoojaDhiman, AlbertoGarcía-Penas. 基于碳质材料的Z型和S型异质结光催化清洁能源的综述. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60857-7
Sahil Rana, Amit Kumar, WANG Tong-tong, Gaurav Sharma, Pooja Dhiman, Alberto García-Penas. Recent progress in carbonaceous materials based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60857-7
Citation: Sahil Rana, Amit Kumar, WANG Tong-tong, Gaurav Sharma, Pooja Dhiman, Alberto García-Penas. Recent progress in carbonaceous materials based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60857-7

基于碳质材料的Z型和S型异质结光催化清洁能源的综述

doi: 10.1016/S1872-5805(24)60857-7
详细信息
    通讯作者:

    Amit Kumar. E-mail:mittuchem83@gmail.com

  • 中图分类号: TQ127.1+1

Recent progress in carbonaceous materials based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation

More Information
  • 摘要: 碳纳米管/纳米纤维、石墨烯、氧化石墨烯、还原氧化石墨烯、石墨炔、碳量子点和富勒烯等炭材料因具有高导电性、优异的稳定性和生物相容性等独特性能,近年来受到广泛关注。在炭材料中构建Z型和S型异质结已成为在能量转换应用中提高光催化效率的一种变革性策略。本文综述了光催化制氢和CO2还原等清洁能源的基本原理,阐述了它们各自的机理和优势。此外,还讨论了不同类型的炭材料以及其中Z型和S型异质结的合成和构建,强调了它们在促进电荷分离、减少复合损失和扩大光谱响应范围方面的作用。以太阳能燃料生产为重点,讨论和总结了碳基Z型和S型异质结在光催化制氢和还原CO2方面的最新进展。最后,讨论了目前碳基光催化剂领域的瓶颈和挑战,并对该领域的未来发展提出了有价值的见解。
  • Figure  1.  Schematic illustration of (a) photocatalytic H2 generation and (b) photocatalytic CO2 reduction mechanism

    Figure  2.  Schematic illustration of (a) traditional Z-scheme, (b) all-solid-state Z-scheme and (c) direct Z-scheme heterojunction

    Figure  3.  Schematic illustration of S-scheme heterojunction (a) before contact, (b) after contact and (c) upon light irradiation

    Figure  4.  Various types of carbonaceous materials

    Figure  5.  (a) SEM and (b) HRTEM images of g-C3N4/CNTs/CdZnS; (c) photocatalytic H2 generation and (d) surface work function of prepared photocatalysts; Reproduced with permission from Elsevier[83]. (e) SEM and (f) HRTEM images of ZIS/CDs/CN composite; (g) XRD and FTIR spectra of ZIS/CDs/CN before and after photocatalysis; (i) S-scheme heterojunction mechanism between ZIS and CN before contact, after contact in dark and light; Reproduced with permission from Elsevier[84]

    Figure  6.  STEM images of (a) GO and (b) rGO, Reproduced with permission from Elsevier[101]; (c) geometry of graphyne, Reproduced with permission from Elsevier[102]; (d) reaction for synthesis of γ-graphyne, Reproduced with permission from Elsevier[103]; (e) synthetic route of GDY, Reproduced with permission from Elsevier[104]

    Figure  7.  (a) Hydrothermal synthetic route of CdxZn1-xS-FG, Reproduced with permission from Elsevier[122]; (b) Self-assembly synthesis of X% RGO/H-CN, Reproduced with permission from Elsevier[130]; (c) Ultrasonication synthetic route of NiFe-LFD, NiFe-P and NPG-X, Reproduced with permission from Elsevier[104]; (d) Calcination synthesis of CO2SnO4 and Co2SnO4/GDY-x, Reproduced with permission from Elsevier[131]

    Figure  8.  (a) ESR spectra of ZIS-S and ZIS, (b) H2 generation rate over various photocatalysts, (c) H2 generation performance of ZIS-S/CNTs/RP, ZIS-S/CNTs/BRP and ZIS/CNTs/RP, (d-e) PL spectra and EIS Nyquist plots of ZIS-S/CNTs/RP, ZIS-S/CNTs/BRP and ZIS/CNTs/RP, (f) proposed photocatalytic H2 generation mechanism over Z-scheme ZIS-S/CNTs/RP heterojunction, Reproduced with permission from Elsevier[25]; (g) H2 evolution performance of various photocatalysts, (h) H2 evolution performance of GCW35 at different pH, (i) AQE of GCW35 at different wavelengths, (j) charge transfer paths of WO3/GDY S-scheme heterojunction, Reproduced with permission from Elsevier[138]

    Figure  9.  (a) Photoreduction performance of various photocatalysts, (b) carbon products selectivity of catalysts, (c) EIS Nyquist plots of In2O3, NiAl-LDH, DH@IN-50 and 3%C-DH@IN, (d) DMPO- •O2- and DMPO- •OH spin-trapping ESR spectra of 3%C-DH@IN, (e) charge transfer mechanism over C-DH@IN, Reproduced with permission from Elsevier[165]; (f) CO and CH4 yields for various photocatalysts, (g) cycling experiments, (h) EIS curves of CN, 15CCN and 3RCCN, (i) band gap structure and CO2 photo-reduction mechanism of 3RCCN multi-interface contact composite, Reproduced with permission from Elsevier[166]

    Table  1.   Recent advances in carbonaceous based Z-scheme and S-scheme heterojunctions for photocatalytic H2 generation

    No.Photocatalyst (dosage)Synthesis methodSacrificial agentLight source/ IntensityAQEPerformanceReference
    1ZnIn2S4-S/CNTs/RP (30 mg)Directed assemblyNa2S & Na2SO3Xe lamp, 300 W1639.9 µmol/g/h[25]
    2g-C3N4/CNTs/CdZnS (50 mg)HydrothermalNa2S & Na2SO3Xe lamp, 300 W28.74 mmol/g/h[83]
    3Zn3V2O8/MWCNT (50 mg)HydrothermalGlycerolXe lamp99.55 µmol/g/h[139]
    4ZnIn2S4/carbon dots/g-C3N4 (25 mg)Calcination and water bathTEOAXe lamp, 300 W12.73% at 420 nm17.58 mmol/g/h[84]
    5g-C3N4/NCDS/MoS2 (0.05 g)Thermal polymerization and solvothermalTEOAXe lamp, 300 W212.41 µmol/g/h[140]
    6C dots decorated g-C3N4/TiO2 (50 mg)Solvothermal and calcinationTEOALED lamps, 12 W580 µmol/g/h[141]
    7g-C3N4/NCDs (50 mg)CalcinationTEOAXe lamp, 300 W29.8% at 420 nm3319.3 µmol/g/h[142]
    8g-C3N4/NCDs/WOx (20 mg)In-situ growthTEOAXe lamp, 300 W7.58% at 420 nm3.27 mmol/g/h[143]
    9C3N4 nanotube/NCDs/Ni2P (50 mg)Hydrothermal and calcinationTEOAXe lamp, 300 W627.2 µmol/g/h[144]
    10SnO2/NPCDs/CNNT (10 mg)SonicationTEOAMonochromatic light18.91% at 420 nm10.73 mmol/g/h[145]
    11N-CDs/S-C3N4 (50 mg)π-π conjugate self-assemblyTEOAXe lamp4.67% at 420 nm483.76 µmol/g/h[146]
    12CdxZn1-xS-Fe2O3/rGO (50 mg)HydrothermalNa2S & Na2SO3Xe lamp, 300 W26.8 mmol/g/h[122]
    13Cd0.5Zn0.5S/RGO/g-C3N4 (30 mg)SolvothermalNa2S & Na2SO3Xe lamp, 300 W37.88% at 420 nm39.24 mmol/g/h[147]
    14LaFeO3/g-C3N4-graphene (50 mg)CalcinationTEOAXe lamp, 300 W1326.5 µmol/g/h[124]
    15AgIO4/ZnO/grapheneUltrasonicationMethanolXe lamp, 300 W16.4 mmol/g/h[148]
    16TiO2/RGO/LaFeO3 (10 mg)HydrothermalMethanolXe lamp, 300 W7.1% at 380 nm0.893 mmol/g/h[149]
    17ZnIn2S4/rGO/CeO2 (15 mg)HydrothermalNa2S & Na2SO3Xe lamp, 150 W2855 µmol/g/h[150]
    18WO3/TiO2/rGO (50 mg)HydrothermalMethanolXe lamp, 350 W245.8 µmol/g/h[58]
    19rGO supported TiO2/In0.5WO3 (0.1 mg/mL)Wet impregnationGlycerolXe lamp15.6% at 365 nm309.98±11.4 µmol/g/h[151]
    20Rh-ZnO/rGO/ZnS (30 mg)In-situ micro-cell growth & kinetic ion-exchangeNa2S & Na2SO3Xe lamp, 300 W11.02% at 365 nm2686 µmol/g/h[152]
    21Mn0.2Cd0.8S/CoFe2O4/rGO (50 mg)Electrostatic interactionNa2S & Na2SO3Xe lamp, 300 W133.5 µmol/g/h[153]
    22LaFeO3/RGO (0.5 g/L)HydrothermalMethanolXe lamp, 250 W82 mmol/g/h[154]
    23TiO2/rGO/g-C3N4 (5 mg)Pulsed laser ablation in liquidsGlycerolXe lamp, 300 W10.95% at 450 nm32±1 mmol/g/h[155]
    24n-ZnS/rGO/p-Bi2S3 (0.01 g)HydrothermalNa2S & Na2SO3Xe lamp, 100 W2523.4 µmol/g/h[156]
    25CdS-rGO-WO3 (13 mg)HydrothermalMethanolSolar simulator, 100 W2.49% at 420 nm11.69 mmol/g/h[157]
    26γ-GY/CuMoO4 (10 mg)Hot solventTEOAXe lamp, 300 W197 µmol in 5h[158]
    27Co2SnO4/graphdiyne (10 mg)CalcinationTEOALED light, 5 W8.79 mmol/g/h[131]
    28GDY/MoP (10 mg)Physical mixingTEOAXe lamp, 300 W8876.4 µmol/g/h[159]
    29GDY-Cu/WO3 (10 mg)Stirring and evaporating solventTEOALED light, 5 W0.76% at 475 nm4008 µmol/g/h[138]
    30CoS2/GDY (10 mg)Low-temperature water bathTEOALED, 5 W1.52% at 475 nm1835 µmol/g/h[160]
    31CuI-GDY/ZnAl LDH (10 mg)Self-assemblyTEOAXe lamp, 300 W0.15% at 420 nm28.60 µmol in 5h[161]
    32GDY/g-C3N4-VN (6 mg)SonicationTEOALED lamp, 5 W17.87 µmol/h[125]
    33GDY/CoTiO3 (10 mg)In-situ calcinationTEOALED, 5 W5.45% at 420 nm716 µmol/g/h[162]
    34NiFe LDH/GDY (20 mg)Ultrasonic and stirringXe lamp, 300 W928 µmol/g/h[104]
    35CdS-g-C3N4-GA (50 mg)UltrasoundTEOAXe lamp, 300 W86.38 µmol/g/h[29]
    36g-C3N4/TiO2/ZnIn2S4 graphene aerogel (100 mg)Isoelectric point assisted calcinationMethanolXe lamp, 300 W6531.9 µmol/g[163]
    下载: 导出CSV

    Table  2.   Recent advances in carbonaceous based Z-scheme and S-scheme heterojunctions for photocatalytic CO2 reduction

    No.Photocatalyst (Dosage)Synthesis methodLight source/ IntensityPerformanceReference
    1g-C3N4/CDs/WO3 (20 mg)Confined co-assemblyXe lamp, 300 WCO = 31.04 µmol/g/h[167]
    2CPDs/Bi4O5Br2 (30 mg)Co-precipitationXe lamp, 300 WCO = 132.42 µmol/g/h[126]
    3CQDs/Bi12O17Cl2/NiAl-LDH (50 mg)One-pot hydrothermalXe lamp, 300 WCO = 16.4 µmol/g/h[168]
    4CDs/NiAl-LDH@In2O3 (5 mg)In-situ hydrothermalXe lamp, 300 WCH4 = 10.67 µmol/g/h
    CO = 7.12 µmol/g/h
    [165]
    5CPDs/Bi12O17Cl2 (30 mg)Mechanical stirringXe lamp, 300 WCO = 3.21 µmol/g/h[169]
    6Ag2CrO4/g-C3N4/GO (100 mg)Self-assemblyXe lamp, 300 WCH3OH+CH4 = 1.03 µmol/g in 3h[170]
    7O-ZnO/rGO/UiO-66-NH2 (0.1 g)SolvothermalXe lamp, 300 WCH3OH = 34.83 µmol/g/h
    HCOOH = 6.41 µmol/g/h
    [123]
    8α-Fe2O3/graphene/Bi2O2S (50 mg)Impregnation-hydrothermalXe lamp, 300 WCO = 13 µmol/g/h
    CH4 = 4.27 µmol/g/h
    C2H4 = 2.88 µmol/g/h
    [171]
    9g-C3N4/ZnO/GA (10 mg)Self-assembly with co-precipitationXe lamp, 300 WCO = 33.87 µmol/g/h[172]
    10RGO/H-CN (5 mg)Self-assemblyXe lamp, 300 WCO = 10.21 µmol/g
    CH4 = 5.56 µmol/g
    [130]
    11g-C3N4/BiOI/RGO on Ni foamReductionXe lamp, 300 WCO = 21.85 µmol/g in 8h[173]
    12α-Fe2O3/amine-RGO/CsPbBr3Solvent evaporation-depositionXe lamp, 150 WCH4+CO+H2 = 469.16 µmol/g in 40h[174]
    13MoS2/SnS2/rGO (20 mg)SolvothermalMercury lamp, 8 WCO = 68.53 µmol/g/h
    CH4 = 50.55 µmol/g/h
    [175]
    14ZnV2O6/rGO/g-C3N4 (100 mg)One-pot solvothermalHg lamp, 200 WCO = 2802.9 µmol/g/h[176]
    15CsPbBr3/USGO/α-Fe2O3 (4 mg)UltrasonicationXe lamp, 300 WCO = 73.8 µmol/g/h[177]
    16ZnV2O6/RGO/g-C3N4 (100 mg)SolvothermalXe lamp, 35 WCH3OH = 3438 µmol/g[178]
    17rGO/InVO4/Fe2O3 (100 mg)Deposition-precipitationLED light, 20 WCH3OH = 16.9 mmol/g[179]
    18g-C3N4-RGO-NH2-MIL-125(Ti) (100 mg)HydrothermalHID Xe lamp, 35 WCO = 383.79 µmol/g
    CH4 = 13.8 µmol/g
    [180]
    19Bi2WO6/RGO/g-C3N4 (50 mg)HydrothermalXe lamp, 300 WCO = 15.96 µmol/g/h[181]
    20CoAl-LDH/RGO/InVO4 (50 mg)HydrothermalXe lamp, 300 WCO = 204.86 µmol/g/h[182]
    21g-C3N4/rGO/ZnV2O6 (0.1 g)One-pot solvothermalHID Xe lamp, 35 WCH3OH = 6246.1 µmol/g[127]
    22g-C3N4/R-CeO2/rGO (100 mg)HydrothermalXe lamp, 300 WCO = 63.18 µmol/g in 4h
    CH4 = 32.67 µmol/g in 4h
    [166]
    23CoZnAl-LDH/RGO/g-C3N4 (50 mg)HydrothermalXe lamp, 300 WCO = 10.11 µmol/g/h[183]
    24g-C3N4/Ag3VO4/rGO (0.05 g)HydrothermalUV-vis lightCO = 7.03 µmol/g/h[184]
    25MXene/GO/PDI (10 mg)ImpregnationXe lamp, 350 WCH3OH = 771.1 µmol/g/h[185]
    26C60/TpPaIn-situ solvothermalLED lamp, 40 WCO = 90.25 µmol/g/h[116]
    下载: 导出CSV
  • [1] Zhang Y, Liu J, Li SL, et al. Polyoxometalate-based materials for sustainable and clean energy conversion and storage[J]. EnergyChem, 2019, 1: (3): 100021.
    [2] Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305: (5686): 972-974.
    [3] Benson E E, Kubiak C P, Sathrum A J, et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels[J]. Chemical Society Reviews, 2009, 38: (1): 89-99.
    [4] Fan W K, Tahir M. Recent advances on cobalt metal organic frameworks (MOFs) for photocatalytic CO2 reduction to renewable energy and fuels: A review on current progress and future directions[J]. Energy Conversion and Management,2022,253:115180. doi: 10.1016/j.enconman.2021.115180
    [5] Ibhadon A O, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications[J]. Catalysts, 2013: 189-218.
    [6] Chawla H, Chandra A, Ingole P P, et al. Recent advancements in enhancement of photocatalytic activity using bismuth-based metal oxides Bi2MO6 (M=W, Mo, Cr) for environmental remediation and clean energy production[J]. Journal of Industrial and Engineering Chemistry,2021,95:1-15. doi: 10.1016/j.jiec.2020.12.028
    [7] Guo W, Guo T, Zhang Y, et al. Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: A review[J]. Chemosphere,2023,339:139486. doi: 10.1016/j.chemosphere.2023.139486
    [8] Sambyal S, Sharma R, Mandyal P, et al. Advancement in two-dimensional carbonaceous nanomaterials for photocatalytic water detoxification and energy conversion[J]. Journal of Environmental Chemical Engineering, 2023, 11: (2): 109517.
    [9] Ge J, Zhang Y, Park S J, Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: A mini review[J]. Materials, 2019, 12(12), 1976.
    [10] Kandy M M. Carbon-based photocatalysts for enhanced photocatalytic reduction of CO2 to solar fuels[J]. Sustainable Energy & Fuels, 2020, 4: (2): 469-484.
    [11] Raza A, Altaf S, Ali S, et al. Recent advances in carbonaceous sustainable nanomaterials for wastewater treatments[J]. Sustainable Materials and Technologies,2022,32:e00406. doi: 10.1016/j.susmat.2022.e00406
    [12] Wang J, Yin S, Zhang Q, et al. Single-Atom Fe-N4 sites promote the triplet-energy transfer process of g-C3N4 for the photooxidation[J]. Journal of Catalysis,2021,404:89-95. doi: 10.1016/j.jcat.2021.09.010
    [13] Wang X, Zhou P, Zhou Q, et al. Tandem photocatalytic production of H2O2 and propylene oxide on 5-Bromoisatin modified carbon nitride[J]. Chemical Engineering Journal,2023,476:146488. doi: 10.1016/j.cej.2023.146488
    [14] Zhang S, Liu H, Yu J, et al. Multi-functional flexible 2D carbon nanostructured networks[J]. Nature Communications, 2020, 11: (1): 5134.
    [15] Armano A, Agnello S. Two-dimensional carbon: A review of synthesis methods, and electronic, optical, and vibrational properties of single-layer graphene[J]. 2019.
    [16] Ning H, Guo D, Wang X, et al. Efficient CO2 electroreduction over N-doped hieratically porous carbon derived from petroleum pitch[J]. Journal of Energy Chemistry,2021,56:113-120. doi: 10.1016/j.jechem.2020.07.049
    [17] Ramesh Reddy N, Bhargav U, Mamatha Kumari M, et al. Review on the interface engineering in the carbonaceous titania for the improved photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45: (13): 7584-7615.
    [18] Patnaik S, Martha S, Acharya S, et al. An overview of the modification of gC3N4 with high carbon containing materials for photocatalytic applications[J]. Inorganic Chemistry Frontiers, 2016, 3: (3): 336-347.
    [19] Wang X, Pan Y, Ning H, et al. Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction[J]. Applied Catalysis B: Environmental,2020,266:118630. doi: 10.1016/j.apcatb.2020.118630
    [20] Shandilya P, Saini A K, Sharma R, et al. An overview of synthesis and photocatalytic application of carbon quantum dots-based nanocomposites[J]. Novel Applications of Carbon Based Nano-materials, 2022: 5-35.
    [21] Li X, Shen R, Ma S, et al. Graphene-based heterojunction photocatalysts[J]. Applied Surface Science,2018,430:53-107. doi: 10.1016/j.apsusc.2017.08.194
    [22] Wang Z, Lin Z, Shen S, et al. Advances in designing heterojunction photocatalytic materials[J]. Chinese Journal of Catalysis, 2021, 42: (5): 710-730.
    [23] Zhu Y, Wan T, Wen X, et al. Tunable type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental,2019,244:814-822. doi: 10.1016/j.apcatb.2018.12.015
    [24] Paramanik L, Reddy K H, Parida K M. An energy band compactable B-rGO/PbTiO3 p–n junction: a highly dynamic and durable photocatalyst for enhanced photocatalytic H2 evolution[J]. Nanoscale, 2019, 11: (46): 22328-22342.
    [25] Liu L, Liu J, Yang W, et al. Constructing a Z-scheme ZnIn2S4-S/CNTs/RP nanocomposite with modulated energy band alignment for enhanced photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science,2022,608:482-492. doi: 10.1016/j.jcis.2021.09.145
    [26] Jin Z, Zhang L, Wang G, et al. Graphdiyne formed a novel CuI-GD/g-C3N4 S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution[J]. Sustainable Energy & Fuels, 2020, 4: (10): 5088-5101.
    [27] Mishra S, Acharya R. Recent updates in modification strategies for escalated performance of Graphene/MFe2O4 heterostructured photocatalysts towards energy and environmental applications[J]. Journal of Alloys and Compounds,2023,960:170576. doi: 10.1016/j.jallcom.2023.170576
    [28] Li W, Wang X, Li M, et al. Construction of Z-scheme and p-n heterostructure: Three-dimensional porous g-C3N4/graphene oxide-Ag/AgBr composite for high-efficient hydrogen evolution[J]. Applied Catalysis B: Environmental,2020,268:118384. doi: 10.1016/j.apcatb.2019.118384
    [29] Liu J, Wei X, Sun W, et al. Fabrication of S-scheme CdS-g-C3N4-graphene aerogel heterojunction for enhanced visible light driven photocatalysis[J]. Environmental Research,2021,197:111136. doi: 10.1016/j.envres.2021.111136
    [30] Li Y, Xia Z, Yang Q, et al. Review on g-C3N4-based S-scheme heterojunction photocatalysts[J]. Journal of Materials Science & Technology,2022,125:128-144.
    [31] Kou J, Lu C, Wang J, et al. Selectivity enhancement in heterogeneous photocatalytic transformations[J]. Chemical reviews, 2017, 117: (3): 1445-1514.
    [32] Li X, Yang X, Xue H, et al. Metal-organic frameworks as a platform for clean energy applications[J]. EnergyChem, 2020, 2: (2): 100027.
    [33] Wang H Z, Zhao Y Z, Yang Z X, et al. Oxygen-incorporated carbon nitride porous nanosheets for highly efficient photoelectrocatalytic CO2 reduction to formate[J]. New Carbon Materials, 2022, 37: (6): 1135-1142.
    [34] Yue C, Zhu L, Qiu Y, et al. Recent advances of plasmonic elemental Bi based photocatalysts in environmental remediation and energy conversion[J]. Journal of cleaner production,2023,392:136017. doi: 10.1016/j.jclepro.2023.136017
    [35] Xu W, Zhao X, An X, et al. Alkali halide boost of carbon nitride for photocatalytic H2 evolution in seawater[J]. ACS Applied Materials & Interfaces, 2020, 12: (43): 48526-48532.
    [36] Ismael M. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles[J]. Solar Energy,2020,211:522-546. doi: 10.1016/j.solener.2020.09.073
    [37] Marepally B C, Ampelli C, Genovese C, et al. Chapter 1 - Production of Solar Fuels Using CO2 [M]. Studies in Surface Science and Catalysis, 2019: 7-30.
    [38] Kumar A, Rana S, Sharma G, et al. Recent advances in zeolitic imidazole frameworks based photocatalysts for organic pollutant degradation and clean energy production[J]. Journal of Environmental Chemical Engineering, 2023, 11: (5): 110770.
    [39] Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Reviews, 2014, 43: (22): 7520-7535.
    [40] Rana S, Kumar A, Dhiman P, et al. Progress in graphdiyne and phosphorene based composites and heterostructures as new age materials for photocatalytic hydrogen evolution[J]. Fuel,2024,356:129630. doi: 10.1016/j.fuel.2023.129630
    [41] Kumar A, Rana S, Wang T, et al. Advances in S-scheme heterojunction semiconductor photocatalysts for CO2 reduction, nitrogen fixation and NOx degradation[J]. Materials Science in Semiconductor Processing,2023,168:107869. doi: 10.1016/j.mssp.2023.107869
    [42] Kumar A, Sharma P, Sharma G, et al. Recent progress in advanced strategies to enhance the photocatalytic performance of metal molybdates for H2 production and CO2 reduction[J]. Journal of Alloys and Compounds,2024,971:172665. doi: 10.1016/j.jallcom.2023.172665
    [43] Ong W J, Putri L K, Mohamed A R. Rational design of carbon-based 2D nanostructures for enhanced photocatalytic CO2 reduction: A dimensionality perspective[J]. Chemistry–A European Journal, 2020, 26: (44): 9710-9748.
    [44] Rana S, Kumar A, Sharma G, et al. Recent advances in perovskite-based Z-scheme and S-scheme heterojunctions for photocatalytic CO2 reduction[J]. Chemosphere,2023,339:139765. doi: 10.1016/j.chemosphere.2023.139765
    [45] Balakrishnan A, Gaware G J, Chinthala M. Heterojunction photocatalysts for the removal of nitrophenol: A systematic review[J]. Chemosphere,2023,310:136853. doi: 10.1016/j.chemosphere.2022.136853
    [46] Kumar A, Khan M, He J, et al. Recent developments and challenges in practical application of visible–light–driven TiO2–based heterojunctions for PPCP degradation: A critical review[J]. Water Research,2020,170:115356. doi: 10.1016/j.watres.2019.115356
    [47] Li X, Yu Z, Shao L, et al. A novel strategy to construct a visible-light-driven Z-scheme (ZnAl-LDH with active phase/g-C3N4) heterojunction catalyst via polydopamine bridge (a similar "bridge" structure)[J]. Journal of Hazardous Materials,2020,386:121650. doi: 10.1016/j.jhazmat.2019.121650
    [48] Wen J, Xie J, Chen X, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science,2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030
    [49] Zhang X, Yuan X, Jiang L, et al. Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: Recent advances[J]. Chemical Engineering Journal,2020,390:124475. doi: 10.1016/j.cej.2020.124475
    [50] Wen X J, Shen C H, Fei Z H, et al. Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application[J]. Chemical Engineering Journal,2020,383:123083. doi: 10.1016/j.cej.2019.123083
    [51] Xu Q, Zhang L, Yu J, et al. Direct Z-scheme photocatalysts: Principles, synthesis and applications[J]. Materials Today, 2018, 21: (10): 1042-1063.
    [52] Maeda K. Z-Scheme water splitting using two different semiconductor photocatalysts[J]. ACS Catalysis, 2013, 3: (7): 1486-1503.
    [53] Xu Q, Zhang L, Cheng B, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6: (7): 1543-1559.
    [54] Zhou P, Yu J, Jaroniec M. All-solid-state Z-scheme photocatalytic systems[J]. Advanced Materials, 2014, 26: (29): 4920-4935.
    [55] Low J, Dai B, Tong T, et al. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst[J]. Advanced Materials, 2019, 31: (6): 1802981.
    [56] Ani I, Akpan U, Olutoye M, et al. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2-and ZnO-based photocatalysts: Recent development[J]. Journal of cleaner production,2018,205:930-954. doi: 10.1016/j.jclepro.2018.08.189
    [57] He X, Kai T, Ding P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review[J]. Environmental Chemistry Letters, 2021, 19: (6): 4563-4601.
    [58] He F, Meng A, Cheng B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis, 2020, 41: (1): 9-20.
    [59] Mu J, Teng F, Miao H, et al. In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel Step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting[J]. Applied Surface Science,2020,501:143974. doi: 10.1016/j.apsusc.2019.143974
    [60] Hu T, Dai K, Zhang J, et al. One-pot synthesis of step-scheme Bi2S3/porous g-C3N4 heterostructure for enhanced photocatalytic performance[J]. Materials Letters,2019,257:126740. doi: 10.1016/j.matlet.2019.126740
    [61] Bao Y, Song S, Yao G, et al. S-scheme photocatalytic systems[J]. Solar RRL, 2021, 5: (7): 2100118.
    [62] Gaur M, Misra C, Yadav A B, et al. Biomedical applications of carbon nanomaterials: Fullerenes, quantum dots, nanotubes, nanofibers, and graphene[J]. Materials, 2021, 14: (20): 5978.
    [63] Mohapatra L, Cheon D, Yoo S H. Carbon-based nanomaterials for catalytic wastewater treatment: A review[J]. Molecules, 2023, 28: (4): 1805.
    [64] Huang W, Xiao S, Zhong H, et al. Activation of persulfates by carbonaceous materials: A review[J]. Chemical Engineering Journal,2021,418:129297. doi: 10.1016/j.cej.2021.129297
    [65] Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis[J]. Carbon, 2011, 49: (3): 741-772.
    [66] Wang J, Lim Y F, Wei Ho G. Carbon-ensemble-manipulated ZnS heterostructures for enhanced photocatalytic H2 evolution[J]. Nanoscale, 2014, 6: (16): 9673-9680.
    [67] Xia G, Tian Y, Yin X, et al. Maximizing electrochemical hydrogen peroxide production from oxygen reduction with superaerophilic electrodes[J]. Applied Catalysis B: Environmental,2021,299:120655. doi: 10.1016/j.apcatb.2021.120655
    [68] Li Y, Zhang H, Liu P, et al. Cross-Linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity[J]. Small, 2013, 9: (19): 3336-3344.
    [69] Jahan S, Mansoor F, Naz S, et al. Oxidative synthesis of highly fluorescent boron/nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye[J]. Analytical Chemistry, 2013, 85: (21): 10232-10239.
    [70] Tan X, Zhang J, Cao F, et al. Salt effect engineering single Fe-N2P2-Cl sites on interlinked porous carbon nanosheets for superior oxygen reduction reaction and Zn-air batteries[J]. Advanced Science, 2024, 11: (12): 2306599.
    [71] Singla S, Sharma S, Basu S, et al. Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials[J]. International Journal of Hydrogen Energy, 2021, 46: (68): 33696-33717.
    [72] Liang Q, Li Z, Huang Z H, et al. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production[J]. Advanced Functional Materials, 2015, 25: (44): 6885-6892.
    [73] Meng X, Dong Y, Hu Q, et al. Co Nanoparticles decorated with nitrogen doped carbon nanotubes for boosting photocatalytic water splitting[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: (1): 1753-1759.
    [74] Kang S-Z, Chen L, Li X, et al. Composite photocatalyst containing Eosin Y and multiwalled carbon nanotubes loaded with CuO/NiO: Mixed metal oxide as an active center of H2 evolution from water[J]. Applied Surface Science, 2012, 258: (16): 6029-6033.
    [75] Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes[J]. Chemical reviews, 2006, 106: (3): 1105-1136.
    [76] De Jong K P, Geus J W. Carbon nanofibers: Catalytic synthesis and applications[J]. Catalysis Reviews, 2000, 42: (4): 481-510.
    [77] Osorio-Aguilar D-M, Saldarriaga-Noreña H-A, Murillo-Tovar M-A, et al. Adsorption and photocatalytic degradation of methylene blue in carbon nanotubes: A review with bibliometric analysis[J]. Catalysts, 2023, 13: (12): 1480.
    [78] Kuvarega A T, Mamba B B. TiO2-based photocatalysis: Toward visible light-responsive photocatalysts through doping and fabrication of carbon-based nanocomposites[J]. Critical Reviews in Solid State and Materials Sciences, 2017, 42: (4): 295-346.
    [79] Farhadian M, Sangpour P, Hosseinzadeh G. Preparation and photocatalytic activity of WO3–MWCNT nanocomposite for degradation of naphthalene under visible light irradiation[J]. RSC Advances, 2016, 6: (45): 39063-39073.
    [80] Keshavarz S, Okoro O V, Hamidi M, et al. Synthesis, surface modifications, and biomedical applications of carbon nanofibers: Electrospun vs vapor-grown carbon nanofibers[J]. Coordination Chemistry Reviews,2022,472:214770. doi: 10.1016/j.ccr.2022.214770
    [81] Chung K H, Jeong S, Kim B J, et al. Enhancement of photocatalytic hydrogen production by liquid phase plasma irradiation on metal-loaded TiO2/carbon nanofiber photocatalysts[J]. International Journal of Hydrogen Energy, 2018, 43: (24): 11422-11429.
    [82] Wang X, Wang W, Zhang J, et al. Carbon sustained SnO2-Bi2O3 hollow nanofibers as Janus catalyst for high-efficiency CO2 electroreduction[J]. Chemical Engineering Journal,2021,426:131867. doi: 10.1016/j.cej.2021.131867
    [83] Feng C, Chen Z, Jing J, et al. Significantly enhanced photocatalytic hydrogen production performance of g-C3N4/CNTs/CdZnS with carbon nanotubes as the electron mediators[J]. Journal of Materials Science & Technology,2021,80:75-83.
    [84] Xu Z, Shi W, Shi Y, et al. Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution[J]. Applied Surface Science,2022,595:153482. doi: 10.1016/j.apsusc.2022.153482
    [85] Shen L M, Liu J. New development in carbon quantum dots technical applications[J]. Talanta,2016,156-157:245-256. doi: 10.1016/j.talanta.2016.05.028
    [86] Wu Y, Tang L, Liu D, et al. In-situ synthesis of high thermal stability and salt resistance carbon dots for injection pressure reduction and enhanced oil recovery[J]. Nano Research, 2023, 16: (10): 12058-12065.
    [87] Sabet M, Mahdavi K. Green synthesis of high photoluminescence nitrogen-doped carbon quantum dots from grass via a simple hydrothermal method for removing organic and inorganic water pollutions[J]. Applied Surface Science,2019,463:283-291. doi: 10.1016/j.apsusc.2018.08.223
    [88] Mishra A, Basu S, Shetti N P, et al. Chapter 27-Photocatalysis of graphene and carbon nitride-based functional carbon quantum dots[M]. Nanoscale Materials in Water Purification, 2019, 759-781.
    [89] Heng Z W, Chong W C, Pang Y L, et al. An overview of the recent advances of carbon quantum dots/metal oxides in the application of heterogeneous photocatalysis in photodegradation of pollutants towards visible-light and solar energy exploitation[J]. Journal of Environmental Chemical Engineering, 2021, 9: (3): 105199.
    [90] Wu X, Zhao Q, Zhang J, et al. 0D carbon dots intercalated Z-scheme CuO/g-C3N4 heterojunction with dual charge transfer pathways for synergetic visible-light-driven photo-Fenton-like catalysis[J]. Journal of Colloid and Interface Science,2023,634:972-982. doi: 10.1016/j.jcis.2022.12.052
    [91] Wu X, Zhao Q, Guo F, et al. Porous g-C3N4 and α-FeOOH bridged by carbon dots as synergetic visible-light-driven photo-fenton catalysts for contaminated water remediation[J]. Carbon,2021,183:628-640. doi: 10.1016/j.carbon.2021.07.006
    [92] Gao W, Zhang S, Wang G, et al. A review on mechanism, applications and influencing factors of carbon quantum dots based photocatalysis[J]. Ceramics International, 2022, 48: (24): 35986-35999.
    [93] Bointon T H, Barnes M D, Russo S, et al. High quality monolayer graphene synthesized by resistive heating cold wall chemical vapor deposition[J]. Advanced Materials, 2015, 27: (28): 4200-4206.
    [94] Wu X, Liu T, Ni W, et al. Engineering controllable oxygen vacancy defects in iron hydroxide oxide immobilized on reduced graphene oxide for boosting visible light-driven photo-Fenton-like oxidation[J]. Journal of Colloid and Interface Science,2022,623:9-20. doi: 10.1016/j.jcis.2022.04.094
    [95] Qiu J, Zhang P, Ling M, et al. Photocatalytic synthesis of TiO2 and reduced graphene oxide nanocomposite for lithium ion battery[J]. ACS Applied Materials & Interfaces, 2012, 4: (7): 3636-3642.
    [96] Khan F, Khan M S, Kamal S, et al. Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photodegradation of dyes[J]. Journal of Materials Chemistry C, 2020, 8: (45): 15940-15955.
    [97] Gupta V K, Eren T, Atar N, et al. CoFe2O4@TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos[J]. Journal of Molecular Liquids,2015,208:122-129. doi: 10.1016/j.molliq.2015.04.032
    [98] Shetti N P, Malode S J, Malladi R S, et al. Electrochemical detection and degradation of textile dye Congo red at graphene oxide modified electrode[J]. Microchemical Journal,2019,146:387-392. doi: 10.1016/j.microc.2019.01.033
    [99] Mohd Kaus N H, Rithwan A F, Adnan R, et al. Effective strategies, mechanisms, and photocatalytic efficiency of semiconductor nanomaterials incorporating rGO for environmental contaminant degradation[J]. Catalysts, 2021, 11: (3): 302.
    [100] Dai H, Huang Y, Huang H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue[J]. Carbohydrate Polymers,2018,185:1-11. doi: 10.1016/j.carbpol.2017.12.073
    [101] Gebreegziabher G G, Asemahegne A S, Ayele D W, et al. One-step synthesis and characterization of reduced graphene oxide using chemical exfoliation method[J]. Materials Today Chemistry,2019,12:233-239. doi: 10.1016/j.mtchem.2019.02.003
    [102] Perveen M, Noreen L, Waqas M, et al. A DFT approach for finding therapeutic potential of graphyne as a nanocarrier in the doxorubicin drug delivery to treat cancer[J]. Journal of Molecular Graphics and Modelling,2023,124:108537. doi: 10.1016/j.jmgm.2023.108537
    [103] Barua M, Saraswat A, Rao C N R. A novel method for synthesis of γ-graphyne and their charge transfer properties[J]. Carbon,2022,200:247-252. doi: 10.1016/j.carbon.2022.08.061
    [104] Fan Z, Lu H, Liu Y, et al. Distinctive graphdiyne coupled with phosphorylation NiFe-LDH S-scheme heterojunction for photocatalytic overall water splitting[J]. Chemical Engineering Journal,2023,477:147008. doi: 10.1016/j.cej.2023.147008
    [105] Gong Y, Shen L, Kang Z, et al. Progress in energy-related graphyne-based materials: Advanced synthesis, functional mechanisms and applications[J]. Journal of Materials Chemistry A, 2020, 8: (41): 21408-21433.
    [106] Guo S, Jiang Y, Wu F, et al. Graphdiyne-promoted highly efficient photocatalytic activity of graphdiyne/silver phosphate pickering emulsion under visible-light irradiation[J]. ACS Applied Materials & Interfaces, 2019, 11: (3): 2684-2691.
    [107] Yang C, Li Y, Chen Y, et al. Mechanochemical synthesis of γ-graphyne with enhanced lithium storage performance[J]. Small, 2019, 15: (8): 1804710.
    [108] Baughman R H, Eckhardt H, Kertesz M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms[J]. The Journal of Chemical Physics, 1987, 87: (11): 6687-6699.
    [109] Kang J, Li J, Wu F, et al. Elastic, Electronic, and optical properties of two-dimensional graphyne sheet[J]. The Journal of Physical Chemistry C, 2011, 115: (42): 20466-20470.
    [110] Anafcheh M, Ektefa F. Cyclosulfurization of C60 and C70 fullerenes: A DFT study[J]. Structural Chemistry,2015,26:1115-1124. doi: 10.1007/s11224-015-0566-z
    [111] Tycko R, Haddon R C, Dabbagh G, et al. Solid-state magnetic resonance spectroscopy of fullerenes[J]. The Journal of Physical Chemistry, 1991, 95: (2): 518-520.
    [112] Pan Y, Liu X, Zhang W, et al. Advances in photocatalysis based on fullerene C60 and its derivatives: Properties, mechanism, synthesis, and applications[J]. Applied Catalysis B: Environmental,2020,265:118579. doi: 10.1016/j.apcatb.2019.118579
    [113] Hasobe T, Imahori H, Fukuzumi S, et al. Light energy conversion using mixed molecular nanoclusters. Porphyrin and C60 cluster films for efficient photocurrent generation[J]. The Journal of Physical Chemistry B, 2003, 107: (44): 12105-12112.
    [114] Long D, Chen W, Rao X, et al. Synergetic effect of C60/g-C3N4 nanowire composites for enhanced photocatalytic H2 evolution under visible light irradiation[J]. ChemCatChem, 2020, 12: (7): 2022-2031.
    [115] Song L, Li T, Zhang S. Fullerenes/graphite carbon nitride with enhanced photocatalytic hydrogen evolution ability[J]. The Journal of Physical Chemistry C, 2017, 121: (1): 293-299.
    [116] He Y-O, Fu Y-M, Meng X, et al. Enhanced visible light-driven CO2 reduction activity induced by Z-scheme heterojunction photocatalyst C60/TpPa (COF)[J]. Applied Catalysis A: General,2023,663:119320. doi: 10.1016/j.apcata.2023.119320
    [117] Ge J, Zhang Y, Park S-J. Recent Advances in carbonaceous photocatalysts with enhanced photocatalytic performances: A mini review[J]. Materials, 2019, 12: (12): 1916.
    [118] Enterría M, Figueiredo J L. Nanostructured mesoporous carbons: Tuning texture and surface chemistry[J]. Carbon,2016,108:79-102. doi: 10.1016/j.carbon.2016.06.108
    [119] Zhuo H, Hu Y, Tong X, et al. Sustainable hierarchical porous carbon aerogel from cellulose for high-performance supercapacitor and CO2 capture[J]. Industrial Crops and Products,2016,87:229-235. doi: 10.1016/j.indcrop.2016.04.041
    [120] Gan G, Li X, Fan S, et al. Carbon aerogels for environmental clean-up[J]. European Journal of Inorganic Chemistry, 2019, 2019: (27): 3126-3141.
    [121] Lee J-H, Park S-J. Recent advances in preparations and applications of carbon aerogels: A review[J]. Carbon,2020,163:1-18. doi: 10.1016/j.carbon.2020.02.073
    [122] Liu Q, Cao J, Ji Y, et al. The direct Z-scheme CdxZn1-xS nanorods-Fe2O3 quantum dots heterojunction/reduced graphene oxide nanocomposites for photocatalytic degradation and photocatalytic hydrogen evolution[J]. Applied Surface Science,2021,570:151085. doi: 10.1016/j.apsusc.2021.151085
    [123] Meng J, Chen Q, Lu J, et al. Z-Scheme Photocatalytic CO2 reduction on a heterostructure of oxygen-defective ZnO/reduced graphene oxide/UiO-66-NH2 under visible light[J]. ACS Applied Materials & Interfaces, 2019, 11: (1): 550-562.
    [124] Tian Z, Yang X, Chen Y, et al. Construction of LaFeO3/g-C3N4 nanosheet-graphene heterojunction with built-in electric field for efficient visible-light photocatalytic hydrogen production[J]. Journal of Alloys and Compounds,2022,890:161850. doi: 10.1016/j.jallcom.2021.161850
    [125] Deng W, Hao X, Shao Y, et al. Construction of 2D-2D S-scheme heterojunction based graphdiyne (g-CnH2n−2) coupling with highly crystalline nitrogen defect g-C3N4 for efficient photocatalytic overall water splitting[J]. Separation and Purification Technology,2023,323:124375. doi: 10.1016/j.seppur.2023.124375
    [126] Wang B, Zhao J, Chen H, et al. Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental,2021,293:120182. doi: 10.1016/j.apcatb.2021.120182
    [127] Bafaqeer A, Tahir M, Amin N A S, et al. Performance analysis of rGO-bridged g-C3N4/ZnV2O6 S-scheme heterojunction for CO2 photoreduction with H2O in an externally reflected photoreactor[J]. Journal of Alloys and Compounds,2023,968:171833. doi: 10.1016/j.jallcom.2023.171833
    [128] Balapure A, Dutta J R, Ganesan R. Recent advances in semiconductor heterojunction: A detailed review of fundamentals of the photocatalysis, charge transfer mechanism, and materials[J]. RSC Applied Interfaces, 2023.
    [129] Sharma K, Hasija V, Malhotra M, et al. A review of CdS-based S-scheme for photocatalytic water splitting: Synthetic strategy and identification techniques[J]. International Journal of Hydrogen Energy,2024,52:804-818. doi: 10.1016/j.ijhydene.2023.09.033
    [130] Liu Y, Shang J, Zhu T. Enhanced thermal-assisted photocatalytic CO2 reduction by RGO/H-CN two-dimensional heterojunction[J]. Journal of Materials Science & Technology,2024,176:36-47.
    [131] Guo X, Xiao Q, Yang T, et al. Construction of S-Scheme Co2SnO4/graphdiyne heterojunction to promote carrier transfer for efficiently photocatalytic hydrogen evolution characterized with in situ XPS[J]. Separation and Purification Technology,2023,325:124764. doi: 10.1016/j.seppur.2023.124764
    [132] Yang X, Sheng L, Ye Y, et al. Recent advances in metal-free CDs/g-C3N4 photocatalysts: Synthetic strategies, mechanism insight, and applications[J]. Journal of Materials Science & Technology,2023,150:11-26.
    [133] Velempini T, Prabakaran E, Pillay K. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—a review[J]. Materials Today Chemistry,2021,19:100380. doi: 10.1016/j.mtchem.2020.100380
    [134] Dutta V, Sharma S, Raizada P, et al. An overview on WO3 based photocatalyst for environmental remediation[J]. Journal of Environmental Chemical Engineering, 2021, 9: (1): 105018.
    [135] Ismael M. Ferrites as solar photocatalytic materials and their activities in solar energy conversion and environmental protection: A review[J]. Solar Energy Materials and Solar Cells,2021,219:110786. doi: 10.1016/j.solmat.2020.110786
    [136] Liu Y, Shen S, Li Z, et al. Mesoporous g-C3N4 nanosheets with improved photocatalytic performance for hydrogen evolution[J]. Materials Characterization,2021,174:111031. doi: 10.1016/j.matchar.2021.111031
    [137] Shandilya P, Sambyal S, Sharma R, et al. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts[J]. Journal of Hazardous Materials,2022,428:128218. doi: 10.1016/j.jhazmat.2022.128218
    [138] Jin Z, Wang T, Cui E, et al. Constructing a tandem heterojunction: S-scheme heterojunction and Ohmic junction based on graphdiyne, synergistically optimizing photocatalytic hydrogen evolution[J]. Chemical Engineering Journal,2023,477:147210. doi: 10.1016/j.cej.2023.147210
    [139] Alharthi F A, Ababtain A S, Alanazi H S, et al. Zinc vanadate (Zn3V2O8) immobilized multiwall carbon nanotube (MWCNT) heterojunction as an efficient photocatalyst for visible light driven hydrogen production[J]. Molecules, 2023, 28: (3): 1362.
    [140] Jiao Y, Huang Q, Wang J, et al. A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental,2019,247:124-132. doi: 10.1016/j.apcatb.2019.01.073
    [141] Hu Z, Shi D, Wang G, et al. Carbon dots incorporated in hierarchical macro/mesoporous g-C3N4/TiO2 as an all-solid-state Z-scheme heterojunction for enhancement of photocatalytic H2 evolution under visible light[J]. Applied Surface Science,2022,601:154167. doi: 10.1016/j.apsusc.2022.154167
    [142] Jiao Y, Li Y, Wang J, et al. Exfoliation-induced exposure of active sites for g-C3N4/N-doped carbon dots heterojunction to improve hydrogen evolution activity[J]. Molecular Catalysis,2020,497:111223. doi: 10.1016/j.mcat.2020.111223
    [143] Song T, Zhang X, Yang P. Bifunctional nitrogen-doped carbon dots in g-C3N4/WOx heterojunction for enhanced photocatalytic water-splitting performance[J]. Langmuir, 2021, 37: (14): 4236-4247.
    [144] Jiao Y, Li Y, Wang J, et al. Double Z-scheme photocatalyst C3N4 nanotube/N-doped carbon dots/Ni2P with enhanced visible-light photocatalytic activity for hydrogen generation[J]. Applied Surface Science,2020,534:147603. doi: 10.1016/j.apsusc.2020.147603
    [145] Shang Y, Liu T, Chen G, et al. N, P co-doped carbon quantum dots bridge g-C3N4 and SnO2: Accelerating charge transport in S-scheme heterojunction for enhanced photocatalytic hydrogen production[J]. Journal of Alloys and Compounds,2024,971:172667. doi: 10.1016/j.jallcom.2023.172667
    [146] Li X, Luo Q, Han L, et al. Enhanced photocatalytic degradation and H2 evolution performance of NCDs/S-C3N4 S-scheme heterojunction constructed by π-π conjugate self-assembly[J]. Journal of Materials Science & Technology,2022,114:222-232.
    [147] Xue W, Hu X, Liu E, et al. Novel reduced graphene oxide-supported Cd0.5Zn0.5S/g-C3N4 Z-scheme heterojunction photocatalyst for enhanced hydrogen evolution[J]. Applied Surface Science,2018,447:783-794. doi: 10.1016/j.apsusc.2018.04.048
    [148] Galal A H, Elmahgary M G, Ahmed M A. Construction of novel AgIO4/ZnO/graphene direct Z-scheme heterojunctions for exceptional photocatalytic hydrogen gas production[J]. Nanotechnology for Environmental Engineering, 2021, 6: (1): 5.
    [149] Lv T, Wang H, Hong W, et al. In situ self-assembly synthesis of sandwich-like TiO2/reduced graphene oxide/LaFeO3 Z-scheme ternary heterostructure towards enhanced photocatalytic hydrogen production[J]. Molecular Catalysis,2019,475:110497. doi: 10.1016/j.mcat.2019.110497
    [150] Raja A, Son N, Kang M. Direct Z-scheme ZnIn2S4 spheres and CeO2 nanorods decorated on reduced-graphene-oxide heterojunction photocatalysts for hydrogen evolution and photocatalytic degradation[J]. Applied Surface Science,2023,607:155087. doi: 10.1016/j.apsusc.2022.155087
    [151] Shaheer A R M, Vinesh V, Lakhera S K, et al. Reduced graphene oxide as a solid-state mediator in TiO2/In0.5WO3 S-scheme photocatalyst for hydrogen production[J]. Solar Energy,2021,213:260-270. doi: 10.1016/j.solener.2020.11.030
    [152] Liang S, Wang J, Lin Q, et al. Interface-optimized Rh-ZnO/rGO/ZnS heterostructure constructed via Rh-induced dynamic micro-cell growth for efficient photocatalytic hydrogen evolution[J]. Journal of Alloys and Compounds,2022,904:164021. doi: 10.1016/j.jallcom.2022.164021
    [153] Belakehal R, Güy N, Atacan K, et al. Emerging n-p-n Mn0.2Cd0.8S/CoFe2O4/rGO S-scheme heterojunction for synergistically improved photocatalytic H2 production[J]. Materials Chemistry and Physics,2023,310:128453. doi: 10.1016/j.matchemphys.2023.128453
    [154] Samajdar S, Bera S, Das P S, et al. Exploration of 1D-2D LaFeO3/RGO S-scheme heterojunction for photocatalytic water splitting[J]. International Journal of Hydrogen Energy, 2023, 48: (47): 17838-17851.
    [155] Ibrahim Y O, Hezam A, Qahtan T F, et al. Laser-assisted synthesis of Z-scheme TiO2/rGO/g-C3N4 nanocomposites for highly enhanced photocatalytic hydrogen evolution[J]. Applied Surface Science,2020,534:147578. doi: 10.1016/j.apsusc.2020.147578
    [156] Park H, Son N, Park B H, et al. Switching of a type I to an all-solid-state Z-scheme heterojunction by an electron mediator rGO bridge:18.4% solar-to-hydrogen efficiency in n-ZnS/rGO/p-Bi2S3 ternary catalyst[J]. Chemical Engineering Journal,2022,430:133104. doi: 10.1016/j.cej.2021.133104
    [157] Sarkar A, Mandal M K, Das S, et al. Facile in-situ synthesis of solid mediator based CdS-rGO-WO3 Z-scheme photocatalytic system for efficient photocatalytic hydrogen generation[J]. Optical Materials,2024,147:114670. doi: 10.1016/j.optmat.2023.114670
    [158] Li T, Jin Z. Rationally engineered avtive sites for efficient and durable hydrogen production over γ-graphyne assembly CuMoO4 S-scheme heterojunction[J]. Journal of Catalysis,2023,417:274-285. doi: 10.1016/j.jcat.2022.12.011
    [159] Jin Z, Wu Y. Novel preparation strategy of graphdiyne (CnH2n-2): One-pot conjugation and S-Scheme heterojunctions formed with MoP characterized with in situ XPS for efficiently photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental,2023,327:122461. doi: 10.1016/j.apcatb.2023.122461
    [160] Li X, Lei M, Jin Z. Reinforced photogenerated electrons transfer on a novel graphdiyne(CnH2n-2) based heterojunction for enhanced photocatalytic hydrogen production[J]. Journal of Catalysis,2023,428:115131. doi: 10.1016/j.jcat.2023.115131
    [161] Wang T, Jin Z. Graphdiyne (CnH2n–2) based CuI-GDY/ZnAl LDH double S-scheme heterojunction proved with in situ XPS for efficient photocatalytic hydrogen production[J]. Journal of Materials Science & Technology,2023,155:132-141.
    [162] Li T, Wang X, Jin Z, et al. Enhanced kinetics of photocatalytic hydrogen evolution by interfacial Co-C bonded strongly coupled S-scheme inorganic perovskite/organic graphdiyne (CnH2n-2) heterojunction[J]. Chemical Engineering Journal,2023,477:147018. doi: 10.1016/j.cej.2023.147018
    [163] Liu H, Sun F, Li X, et al. g-C3N4/TiO2/ZnIn2S4 graphene aerogel photocatalysts with double S-scheme heterostructure for improving photocatalytic multifunctional performances[J]. Composites Part B: Engineering,2023,259:110746. doi: 10.1016/j.compositesb.2023.110746
    [164] Balan B, Xavier M M, Mathew S. MoS2-Based Nanocomposites for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction[J]. ACS Omega, 2023, 8: (29): 25649-25673.
    [165] Deng X, Liu C, Yan X, et al. Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4[J]. Chinese Chemical Letters, 2023, 35(6), 108942.
    [166] Li X, Guan J, Jiang H, et al. rGO modified R-CeO2/g-C3N4 multi-interface contact S-scheme photocatalyst for efficient CO2 photoreduction[J]. Applied Surface Science,2021,563:150042. doi: 10.1016/j.apsusc.2021.150042
    [167] Kong X, Fan J, Feng B, et al. Carbon dots-triggered the fabrication of miniature g-C3N4/CDs/WO3 S-scheme heterojunction for efficient CO2 photoreduction[J]. Chemical Engineering Journal,2023,476:146774. doi: 10.1016/j.cej.2023.146774
    [168] Guo R T, Bi Z X, Lin Z D, et al. Carbon quantum dots-modified Z-scheme Bi12O17Cl2/NiAl-LDH for significantly boosting photocatalytic CO2 reduction[J]. Journal of Colloid and Interface Science,2022,627:343-354. doi: 10.1016/j.jcis.2022.07.078
    [169] Quan Y, Wang B, Liu G, et al. Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction[J]. Chemical Engineering Science,2021,232:116338. doi: 10.1016/j.ces.2020.116338
    [170] Xu D, Cheng B, Wang W, et al. Ag2CrO4/g-C3N4/graphene oxide ternary nanocomposite Z-scheme photocatalyst with enhanced CO2 reduction activity[J]. Applied Catalysis B: Environmental,2018,231:368-380. doi: 10.1016/j.apcatb.2018.03.036
    [171] Luo Y, Han H, Zhang G, et al. Construction of Z-scheme ɑ-Fe2O3/graphene/Bi2O2S heterojunction for visible-light-driven photocatalytic CO2 conversion[J]. Separation and Purification Technology,2023,314:123607. doi: 10.1016/j.seppur.2023.123607
    [172] Wang P, Yang M, Tang S, et al. Z-scheme heterojunctions composed of 3D graphene aerogel/g-C3N4 nanosheets/porous ZnO nanospheres for the efficient photocatalytic reduction of CO2 with H2O under visible light irradiation[J]. Journal of Alloys and Compounds,2022,918:165607. doi: 10.1016/j.jallcom.2022.165607
    [173] Hu X, Hu J, Peng Q, et al. Construction of 2D all-solid-state Z-scheme g-C3N4/BiOI/RGO hybrid structure immobilized on Ni foam for CO2 reduction and pollutant degradation[J]. Materials Research Bulletin,2020,122:110682. doi: 10.1016/j.materresbull.2019.110682
    [174] Jiang Y, Liao J F, Chen H Y, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction[J]. Chem, 2020, 6: (3): 766-780.
    [175] Yin S, Li J, Sun L, et al. Construction of Heterogenous S–C–S MoS2/SnS2/r-GO Heterojunction for Efficient CO2 Photoreduction[J]. Inorganic Chemistry, 2019, 58: (22): 15590-15601.
    [176] Bafaqeer A, Tahir M, Amin N A S, et al. Fabricating 2D/2D/2D heterojunction of graphene oxide mediated g-C3N4 and ZnV2O6 composite with kinetic modelling for photocatalytic CO2 reduction to fuels under UV and visible light[J]. Journal of Materials Science, 2021, 56: (16): 9985-10007.
    [177] Mu Y F, Zhang W, Dong G X, et al. Ultrathin and small-size graphene oxide as an electron mediator for perovskite-based Z-scheme system to significantly enhance photocatalytic CO2 reduction[J]. Small, 2020, 16: (29): 2002140.
    [178] Bafaqeer A, Tahir M, Ali Khan A, et al. Indirect Z-Scheme assembly of 2D ZnV2O6/RGO/g-C3N4 nanosheets with RGO/pCN as solid-state electron mediators toward visible-light-enhanced CO2 reduction[J]. Industrial & Engineering Chemistry Research, 2019, 58: (20): 8612-8624.
    [179] Kumar A, Prajapati P K, Pal U, et al. Ternary rGO/InVO4/Fe2O3 Z-Scheme heterostructured photocatalyst for CO2 reduction under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: (7): 8201-8211.
    [180] Ikreedeegh R R, Tahir M. Indirect Z-scheme heterojunction of NH2-MIL-125(Ti) MOF/g-C3N4 nanocomposite with RGO solid electron mediator for efficient photocatalytic CO2 reduction to CO and CH4[J]. Journal of Environmental Chemical Engineering, 2021, 9: (4): 105600.
    [181] Jo W-K, Kumar S, Eslava S, et al. Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels[J]. Applied Catalysis B: Environmental,2018,239:586-598. doi: 10.1016/j.apcatb.2018.08.056
    [182] Wei J, Liang T, Zhang S, et al. Accelerated interfacial charges migration on Z-scheme CoAl-LDH/RGO/InVO4 heterojunction for photocatalytic reduction of CO2[J]. Separation and Purification Technology,2023,325:124683. doi: 10.1016/j.seppur.2023.124683
    [183] Yang Y, Wu J, Xiao T, et al. Urchin-like hierarchical CoZnAl-LDH/RGO/g-C3N4 hybrid as a Z-scheme photocatalyst for efficient and selective CO2 reduction[J]. Applied Catalysis B: Environmental,2019,255:117771. doi: 10.1016/j.apcatb.2019.117771
    [184] Gao M, Sun L, Ma C, et al. Constructed Z-Scheme g-C3N4/Ag3VO4/rGO photocatalysts with multi-interfacial electron-transfer paths for high photoreduction of CO2[J]. Inorganic Chemistry, 2021, 60: (3): 1755-1766.
    [185] Wu W, Bi H, Zhang Z, et al. Z-scheme π-π stacking MXene/GO/PDI composite aerogels to construct interface electron transport network for photocatalytic CO2 reduction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,657:130486. doi: 10.1016/j.colsurfa.2022.130486
    [186] Shi Z-J, Ma M-G, Zhu J-F. Recent development of photocatalysts containing carbon species: A review[J]. Catalysts, 2019, 9: (1): 20.
    [187] Liu Z, Ling Q, Cai Y, et al. Synthesis of carbon-based nanomaterials and their application in pollution management[J]. 2022, 4: (5): 1246-1262.
    [188] Gong E, Ali S, Hiragond C B, et al. Solar fuels: Research and development strategies to accelerate photocatalytic CO2 conversion into hydrocarbon fuels[J]. Energy & Environmental Science, 2022, 15: (3): 880-937.
    [189] Ge J, Zhang Y, Park S J. Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: A mini review[J]. Materials (Basel),2019,12(12):1916.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-01
  • 录用日期:  2024-04-28
  • 修回日期:  2024-04-26
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回