留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Increasing the interlayer spacing and generating closed pores to produce petroleum coke-based carbon materials for sodium ion storage

ZHUANG Hong-kun LI Wen-cui HE Bin LV Jia-he WANG Jing-song SHEN Ming-yuan LU An-hui

庄洪坤, 李文翠, 何斌, 吕家贺, 王敬松, 申明远, 陆安慧. 石油焦炭基储钠材料层间距扩大闭孔研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60858-9
引用本文: 庄洪坤, 李文翠, 何斌, 吕家贺, 王敬松, 申明远, 陆安慧. 石油焦炭基储钠材料层间距扩大闭孔研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60858-9
ZHUANG Hong-kun, LI Wen-cui, HE Bin, LV Jia-he, WANG Jing-song, SHEN Ming-yuan, LU An-hui. Increasing the interlayer spacing and generating closed pores to produce petroleum coke-based carbon materials for sodium ion storage. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60858-9
Citation: ZHUANG Hong-kun, LI Wen-cui, HE Bin, LV Jia-he, WANG Jing-song, SHEN Ming-yuan, LU An-hui. Increasing the interlayer spacing and generating closed pores to produce petroleum coke-based carbon materials for sodium ion storage. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60858-9

石油焦炭基储钠材料层间距扩大闭孔研究

doi: 10.1016/S1872-5805(24)60858-9
基金项目: 国家自然科学基金(22075038,22209019);中央高校基本科研业务费(DUT22LAB607);国家重点研发计划(2021YFA1500300)
详细信息
    通讯作者:

    陆安慧,教授. E-mail:anhuilu@dlut.edu.cn

  • 中图分类号: TQ152

Increasing the interlayer spacing and generating closed pores to produce petroleum coke-based carbon materials for sodium ion storage

Funds: This work was financially supported by the National Natural Science Foundation of China (Nos. 22075038, 22209019), the Fundamental Research Funds for the Central Universities (No. DUT22LAB607), and National Key Research and Development Project (2021YFA1500300)
More Information
  • 摘要: 石油焦含碳量高,成本低,是一种有价值的钠离子电池负极前驱体。易石墨化石油焦基炭的微晶态和孔隙结构的调控对于产生丰富的Na+存储位点至关重要。本研究采用前驱体转化策略,通过酸氧化引入大量氧官能团,然后使用高温炭化分解氧官能团,重新排列碳微晶,从而扩大碳层间距,使石油焦基炭形成丰富的闭孔,大幅提高了平台区Na+的储存能力。优化后的样品在0.02 A g−1下可提供356.0 mAh g−1的可逆容量,其中约93%容量低于1.0 V。恒流间歇滴定技术(GITT)和原位X射线衍射(XRD)表明,低电压平台区钠的储存能力涉及层间插入和闭孔填充过程的共同贡献。本研究提出了一种利用低成本和高芳香性的前驱体开发高性能炭基负极的综合方法。
  • Figure  1.  (a) XRD patterns, (b) FT-IR spectra, (c) XPS spectra of PC and POPC. Deconvoluted high resolution (d) C 1s, (e) O 1s, and (f) S 2p spectra of PC and POPC

    Figure  2.  TEM images of (a) PC-1400 and (b) POPC-1400. (c) XRD patterns, and (d) Raman spectra of POPC-1000, POPC-1200, POPC-1400, POPC-1600 and PC-1400

    Figure  3.  TG-DTG curves of (a) PC and (b) POPC. (c) CO2 sorption isotherms and (d) pore size distributions of POPC-1000, POPC-1200, POPC-1400 and POPC-1600

    Figure  4.  (a) GCD curves in the 1st cycle at a current density of 0.02 A g−1, (b) rate performance, and (c) long-term cycling stability of POPC-1000, POPC-1400, and PC-1400 anodes. (d) CV curves at various scan rates, (e) contribution ratios of capacitive process and diffusion-controlled at various scan rates of POPC-1400 anode

    Figure  5.  Na+ apparent diffusion coefficients calculated from the GITT potential profiles of POPC-1400 for (a) discharge process and (b) charge process during the second cycle. (c) In situ XRD mapping of POPC-1400 at various stages during the first charge-discharge process

    Table  1.   Structural parameters of POPC-1000, POPC-1200, POPC-1400, POPC-1600 and PC-1400

    Samplesd002/nmLa/nmLc/nmR valueTrue density/(g cm−3)Closed pore Volume/(cm3 g−1)
    PC-14000.3403.945.265.672.22
    POPC-10000.3831.003.141.622.130.03
    POPC-12000.3821.033.411.671.980.06
    POPC-14000.3731.043.691.851.890.08
    POPC-16000.3691.143.972.091.780.11
    下载: 导出CSV
  • [1] Hu H, Wu M. Heavy oil-derived carbon for energy storage applications[J]. Journal of Materials Chemistry A,2020,8(15):7066-7082. doi: 10.1039/D0TA00095G
    [2] Prajapati R, Kohli K, Maity S K. Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review[J]. Fuel,2021,288:119686. doi: 10.1016/j.fuel.2020.119686
    [3] Apicella B, Russo C, Senneca O. Analytics for recovery and reuse of solid wastes from refineries[J]. Energies,2022,15(11):4026. doi: 10.3390/en15114026
    [4] Zhu F, Song W L, Ge J B, et al. High-purity graphitic carbon for energy storage: Sustainable electrochemical conversion from petroleum coke[J]. Advanced Science, 2023.
    [5] Agarwal P, Sharma D K. Studies on the desulfurization of petroleum coke by organorefining and other chemical and biochemical techniques under milder ambient pressure conditions[J]. Petroleum Science and Technology,2011,29(14):1482-1493. doi: 10.1080/10916460902839230
    [6] Xiang D, Li P, Yuan X. Parameter optimization and exergy efficiency analysis of petroleum coke-to-hydrogen by chemical looping water splitting process with CO2 capture and self-heating[J]. Fuel,2022,324:124475. doi: 10.1016/j.fuel.2022.124475
    [7] Reis T. Coke, desulfurize and calcine. Coke quality and its control[J]. Hydrocarbon Processing,1975,54(6):97-104.
    [8] Alcantara R, Mateos J M J, Tirado J L. Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000 degrees C[J]. Journal of the Electrochemical Society,2002,149(2):A201-A205. doi: 10.1149/1.1431963
    [9] Li P, Liu J Y, Wang Y W, et al. Synthesis of ultrathin hollow carbon shell from petroleum asphalt for high-performance anode material in lithium-ion batteries[J]. Chemical Engineering Journal,2016,286:632-639. doi: 10.1016/j.cej.2015.10.102
    [10] AlAreeqi S, Bahamon D, Polychronopoulou K, et al. Insights into the thermal stability and conversion of carbon-based materials by using ReaxFF reactive force field: Recent advances and future directions[J]. Carbon,2022,196:840-866. doi: 10.1016/j.carbon.2022.05.035
    [11] Virla L D, Montes V, Wu J F, et al. Synthesis of porous carbon from petroleum coke using steam, potassium and sodium: Combining treatments to create mesoporosity[J]. Microporous and Mesoporous Materials,2016,234:239-247. doi: 10.1016/j.micromeso.2016.07.022
    [12] Li P, Hwang J Y, Park S M, et al. Superior lithium/potassium storage capability of nitrogen-rich porous carbon nanosheets derived from petroleum coke[J]. Journal of Materials Chemistry A,2018,6(26):12551-12558. doi: 10.1039/C8TA03340D
    [13] Li Q Y, Li Z S, Lin L, et al. Facile synthesis of activated carbon/carbon nanotubes compound for supercapacitor application[J]. Chemical Engineering Journal,2010,156(2):500-504. doi: 10.1016/j.cej.2009.10.025
    [14] Jaleh B, Nasrollahzadeh M, Eslamipanah M, et al. The role of carbon-based materials for fuel cells performance[J]. Carbon,2022,198:301-352. doi: 10.1016/j.carbon.2022.07.023
    [15] Pan L, Wang Y X, Hu H, et al. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors[J]. Carbon,2018,134:345-353. doi: 10.1016/j.carbon.2018.04.008
    [16] Fan C L, He H, Zhang K H, et al. Structural developments of artificial graphite scraps in further graphitization and its relationships with discharge capacity[J]. Electrochimica Acta,2012,75:311-315. doi: 10.1016/j.electacta.2012.05.010
    [17] Qiu Z J, Cui Y P, Wang D D, et al. Dual carbon Li-ion capacitor with high energy density and ultralong cycling life at a wide voltage window[J]. Science China-Materials,2022,65(9):2373-2384. doi: 10.1007/s40843-021-2040-4
    [18] Chen Y X, Xi B J, Huang M, et al. Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage[J]. Advanced Materials,2022,34:2108621. doi: 10.1002/adma.202108621
    [19] Geng C, Chen Y X, Shi L L, et al. Design of active sites in carbon materials for electrochemical potassium storage[J]. New Carbon Materials,2022,37(3):461-483. doi: 10.1016/S1872-5805(22)60612-7
    [20] Nagmani, Pahari D, Verma P, et al. Are Na-ion batteries nearing the energy storage tipping point? - Current status of non-aqueous, aqueous, and solid-sate Na-ion battery technologies for sustainable energy storage[J]. Journal of Energy Storage, 2022, 56.
    [21] Jafta C J. Grid scale energy storage: The alkali-ion battery systems of choice[J]. Current Opinion in Electrochemistry,2022,36:101130. doi: 10.1016/j.coelec.2022.101130
    [22] Xu Z, Wang J. Toward emerging sodium-based energy storage technologies: From performance to sustainability[J]. Advanced Energy Materials,2022,12(29):2201692. doi: 10.1002/aenm.202201692
    [23] Li Y, Lu Y, Meng Q, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials,2019,9(48):1902852. doi: 10.1002/aenm.201902852
    [24] Sun F, Wang H, Qu Z, et al. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: Synergistic enhancement of adsorption and intercalation mechanisms[J]. Advanced Energy Materials,2021,11(1):2002981. doi: 10.1002/aenm.202002981
    [25] Zuo J H, Liu Z Y, Jiang H N, et al. Sodium titanate nanowires for Na+-based hybrid energy storage with high power density[J]. Susmat,2022,2(6):720-730. doi: 10.1002/sus2.95
    [26] Wang K, Sun F, Wang H, et al. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor[J]. Advanced Functional Materials,2022,32(34):2203725. doi: 10.1002/adfm.202203725
    [27] Cai C, Chen Y, Hu P, et al. Regulating the interlayer spacings of hard carbon nanofibers enables enhanced pore filling sodium storage[J]. Small,2022,18(6):2105303. doi: 10.1002/smll.202105303
    [28] Zhang T, Li C, Wang F, et al. Recent advances in carbon anodes for sodium-ion batteries[J]. The Chemical Record,2022,22(10):e202200083. doi: 10.1002/tcr.202200083
    [29] Chen X, Tian J, Li P, et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism[J]. Advanced Energy Materials,2022,12(24):2200886. doi: 10.1002/aenm.202200886
    [30] Lu Y, Zhao C, Qi X, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials,2018,8(27):1800108. doi: 10.1002/aenm.201800108
    [31] Hu X D, Sun X H, Yoo S J, et al. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries[J]. Nano Energy,2019,56:828-839. doi: 10.1016/j.nanoen.2018.11.081
    [32] Yin B, Liang S, Yu D, et al. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries[J]. Advanced Materials,2021,33(37):2100808. doi: 10.1002/adma.202100808
    [33] Zhao G, Yu D, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy,2020,67:104219. doi: 10.1016/j.nanoen.2019.104219
    [34] Zhang MM, Yan D, Li WC. Regulation of dual-ion batteries via the defects design in carbon electrode based on the different storage behaviors of PF6 and Li+[J]. Journal of Power Sources,2022,527:231169. doi: 10.1016/j.jpowsour.2022.231169
    [35] Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society,2001,148(8):A803-A811. doi: 10.1149/1.1379565
    [36] Morikawa Y, Nishimura SI, Hashimoto RI, et al. Mechanism of sodium storage in hard carbon: An X-ray scattering analysis[J]. Advanced Energy Materials,2020,10(3):1903176. doi: 10.1002/aenm.201903176
    [37] Cheng D, Zhou X, Hu H, et al. Electrochemical storage mechanism of sodium in carbon materials: A study from soft carbon to hard carbon[J]. Carbon,2021,182:758-769. doi: 10.1016/j.carbon.2021.06.066
    [38] Jin Y, Sun S, Ou M, et al. High-performance hard carbon anode: Tunable local structures and sodium storage mechanism[J]. ACS Applied Energy Materials,2018,1(5):2295-2305. doi: 10.1021/acsaem.8b00354
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  24
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 录用日期:  2024-04-28
  • 修回日期:  2024-04-28
  • 网络出版日期:  2024-05-07

目录

    /

    返回文章
    返回