留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高石墨化度多孔炭的制备及其乙烷/乙烯分离性能

刘汝帅 唐帆 史晓东 郝广平 陆安慧

刘汝帅, 唐帆, 史晓东, 郝广平, 陆安慧. 高石墨化度多孔炭的制备及其乙烷/乙烯分离性能. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60859-0
引用本文: 刘汝帅, 唐帆, 史晓东, 郝广平, 陆安慧. 高石墨化度多孔炭的制备及其乙烷/乙烯分离性能. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60859-0
LIU Ru-shuai, TANG Fan, SHI Xiao-dong, HAO Guang-ping, LU An-hui. Study on the preparation of highly graphitized porous carbon and its ethane/ethylene separation performance.. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60859-0
Citation: LIU Ru-shuai, TANG Fan, SHI Xiao-dong, HAO Guang-ping, LU An-hui. Study on the preparation of highly graphitized porous carbon and its ethane/ethylene separation performance.. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60859-0

高石墨化度多孔炭的制备及其乙烷/乙烯分离性能

doi: 10.1016/S1872-5805(24)60859-0
基金项目: 感谢国家自然科学基金项目(22275027,22075038);中央高校基本科研业务费资助项目(DUT22LAB607)。
详细信息
    作者简介:

    刘汝帅,博士研究生. E-mail:liurushuai@mail.dlut.edu.cn

    通讯作者:

    陆安慧,博士,教授. E-mail:anhuilu@dlut.edu.cn

Study on the preparation of highly graphitized porous carbon and its ethane/ethylene separation performance.

Funds: National Natural Science Foundation of China (22275027, 22075038); The Fundamental Research Funds for the Central Universities (DUT22LAB607).
More Information
  • 摘要: 乙烷(C2H6)与乙烯(C2H4)的高效分离对于制备聚合物级C2H4至关重要,需要开发选择性高和稳定性好的C2H6/C2H4吸附剂。本文以酚醛树脂为前驱体,FeCl3为铁源,通过在室温下聚合及800 ºC下炭化的方法制备了高石墨化度多孔炭GC-800。利用VASP计算证实了石墨化的多孔炭表面与C2H6分子间的结合能更高。石墨化度的增加可以有效提高多孔炭对C2H6的吸附能力,但高温下Fe的催化石墨化过程会破坏多孔炭的微孔结构,从而降低C2H6/C2H4的分离能力。通过调控炭化温度,实现了对多孔炭的石墨化度与孔隙结构的协同优化。拉曼光谱和XPS的数据分析表明,GC-800具有高的石墨化度,且sp2 C的含量高达73%。低温N2物理吸附技术测算出GC-800的比表面积高达574 m2·g−1。在298 K和1 bar的条件下GC-800对C2H6的平衡吸附容量为2.16 mmol·g−1,C2H6/C2H4(1:1和1:9,v/v)IAST选择性分别达到2.4和3.8,显著高于大多数报道的高性能C2H6选择性吸附剂。动态穿透实验表明GC-800可以从C2H6和C2H4混合物中一步获得高纯度的C2H4。动态循环测试证实了GC-800具有良好的循环稳定性,含湿条件下GC-800仍然能高效分离C2H6/C2H4
  • 图  1  VASP软件计算的C2H6和C2H4在不同官能化石墨结构的B.E.:(a,b)石墨化表面;(c,d)N原子掺杂多孔炭;(e,f)N原子掺杂多孔炭

    Figure  1.  B.E. of C2H6 and C2H4 in different functionalized graphite structures calculated by VASP software: (a, b) Graphitized surface, (c, d) N-atom doped porous carbon, (e, f) O-atom doped porous carbon

    图  2  RFC和GC-800的(a,b)SEM图;(c,d)TEM图;(e)XPS C 1s分峰拟合图谱;(f)水汽吸附等温线

    Figure  2.  (a, b) SEM images, (c, d) TEM images, (e) C 1s fitting XPS, and (f) H2O adsorption and desorption isotherms of RFC and GC-800

    图  3  石墨化炭的(a)XRD谱图;(b)Raman谱图;(c)77 K下的N2吸脱附曲线和(d)基于DFT方法计算的孔径分布

    Figure  3.  (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption isotherms at 77 K and (d) pore size distributions (DFT model) of graphitized carbons

    图  4  (a)273 K下和(b)298 K下RFC和GC-800的C2H6/C2H4吸附等温线;(c)298 K下石墨化炭的C2H6/C2H4吸附等温线;(d)计算的石墨化炭的C2H6和C2H4的吸附热,并与文献报道的代表性吸附剂对比[10, 23-27];(e)GC-800的IAST(C2H6/C2H4)选择性;(f)GC-800与文献报道的部分吸附剂在C2H6/C2H4的吸附容量比与C2H6/C2H4选择性方面的对比(C2H6:C2H4=1:1,298 K,100 kPa)[10, 24-25,27-29]

    Figure  4.  C2H6 and C2H4 adsorption isotherms of GC-800 and RFC at (a) 273 K and (b) at 298 K; (c) C2H6 and C2H4 adsorption isotherms of graphitized carbons at 298 K (d) Comparisons of isosteric heat of adsorption (Qst) of G graphitized carbons with the best-performing adsorbents[10, 23-27]; (e) IAST selectivity of RFC at 298 K; (f) Comparison of GC-800 with some of the adsorbents reported in the literature in terms of C2H6/C2H4 adsorption capacity ratio and C2H6/C2H4 selectivity (C2H6 : C2H4=1 : 1, 298 K, 100 kPa)[10, 24-25,27-29]

    图  5  (a)RFC,(b)GC-800,(c)GC-900,(d)GC-1000,在298 K,1 bar下对C2H6/C2H4(1/1,v/v)的动态穿透曲线;(e)GC-800对C2H6/C2H4(1/9,v/v)的循环测试;(f)75%RH下GC-800对C2H6/C2H4(1/9,v/v)的循环测试

    Figure  5.  Breakthrough curves for C2H6/C2H4 (1/1, v/v) mixture of (a) RFC, (b) GC-800, (c) GC-900 and (d) GC-1000 at 298 K and 1 bar; (e) Cycle test of C2H6 adsorption-desorption on GC-800 at 298 K and 1 bar; (f) Cycle test of C2H6 adsorption-desorption on GC-800 at 298 K and 1 bar in 75% RH condition

    表  1  通过拟合C1s XPS光谱获得的C物种表面浓度及XPS表征测定的元素含量

    Table  1.   Carbon species surface concentrations obtained by fitting C1s XPS spectra and the elemental compositions obtained by XPS

    Sample284.8 eV (sp2 carbon)285.7 eV (sp3 carbon)287-291 eV (C―O & C=O)XPS / at%
    CNOFe
    RFC57%36%7%90.11.48.50
    GC-80073%25%2%94.50.74.50.3
    下载: 导出CSV

    表  2  石墨化炭样品织构参数

    Table  2.   Structural parameters of the graphitized carbons

    SampleSBET (m2·g−1)Smic (m2·g−1)Vtotal (cm3·g−1)Vmic (cm3·g−1)
    RFC5064940.260.23
    GC-8005755160.330.28
    GC-9006444750.400.24
    GC-10005333320.340.15
    下载: 导出CSV

    表  3  石墨化炭在298 K和1 bar下对C2H6、C2H4的吸附容量、吸附热及IAST选择性

    Table  3.   C2H6 and C2H4 adsorption capacities at 298 K, 1 bar, Qst and the IAST selectivity of graphitized carbons

    SampleC2H4 adsorption
    capacity (mmol·g−1)
    C2H6 adsorption
    capacity (mmol·g−1)
    Qst
    (C2H4, kJ·mmol−1)
    Qst
    (C2H6, kJ·mmol−1)
    IAST selectivity
    (C2H6:C2H4=1∶1)
    IAST selectivity
    (C2H6:C2H4=1∶9)
    RFC1.691.5030.225.60.80.5
    GC-8001.952.1629.836.12.43.8
    GC-9001.881.9928.736.81.82.9
    GC-10001.381.5028.537.21.31.7
    下载: 导出CSV

    表  4  石墨化炭在298 K和1 bar下对C2H6/C2H4的吸附容量及动态选择性$ {\mathrm{S}}_{{\mathrm{C}}_{2}{\mathrm{H}}_{6}/{\mathrm{C}}_{2}{\mathrm{H}}_{4}} $

    Table  4.   C2H6 and C2H4 dynamic uptake and dynamic selectivity at 298 K, 1 bar of graphitized carbons

    SampleC2H6/C2H4 (1/1, v/v)C2H6/C2H4 (1/9, v/v)
    C2H4 dynamic uptake (mmol·g−1)C2H6 dynamic uptake (mmol·g−1)$ {S}_{{\mathrm{C}}_{2}{\mathrm{H}}_{6}/{\mathrm{C}}_{2}{\mathrm{H}}_{4}} $C2H4 dynamic uptake (mmol·g−1)C2H6 dynamic uptake (mmol·g−1)$ {S}_{{\mathrm{C}}_{2}{\mathrm{H}}_{6}/{\mathrm{C}}_{2}{\mathrm{H}}_{4}} $
    RFC1.671.280.81.550.110.6
    GC-8001.512.051.41.640.372.0
    GC-9001.481.921.31.630.341.9
    GC-10001.421.771.21.520.291.7
    下载: 导出CSV
  • [1] Xu S, Liu R S, Zhang M Y, et al. Designed synthesis of porous carbons for the separation of light hydrocarbons[J]. Chinese Journal of Chemical Engineering,2022,42:130-150.
    [2] Lin X, Yang Y, Wang X, et al. Crystalline porous materials as a versatile platform for C2H4/C2H6 separation[J]. Separation and Purifcation Technology,2024,330:125252.
    [3] Yang L, Qian S, Wang X, et al. Energy-efficient separation alternatives: metal–organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews,2020,49:5359-5406.
    [4] Wang Y, Peh S B, Zhao D, et al. Alternatives to Cryogenic Distillation: Advanced Porous Materials in Adsorptive Light Olefin/Paraffin Separations[J]. Small, 2019, 1900058.
    [5] Wang C T, Li W C, Xu S, Wood frame structured carbons with integrated sieving layer for propylene/propane separation[J]. Chemical Engineering Journal, 2023, 477: 146891.
    [6] Liu R S, Shi X D, Wang C T, et al. The advances in post-combustion CO2 capture by physical adsorption: from materials innovation to separation practice[J]. ChemSusChem,2021,14:1428-1471.
    [7] Wang Y S, Zhang X J, Ba Y Q, et al. Recent advances in carbon-based adsorbents for adsorptive separation of light hydrocarbons[J]. Research, 2022, Article ID 9780864.
    [8] Liu R S, Xu S, Hao G P, et al. Recent advances of porous solids for ultradilute CO2 capture[J]. Chemical Research in Chinese Universities,2022,38(1):18-30.
    [9] Lv D, Zhou P, Xu J, et al. Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents[J]. Chemical Engineering Journal,2022,431:133208.
    [10] Liang W, Zhang Y, Wang X, et al. Asphalt-derived high surface area activated porous carbons for the effective eadsorption separation of ethane and ethylene[J]. Chemical Engineering Science,2017,162(27):192-202.
    [11] Li Y P, Zhao Y N, Li S N, et al. Ultrahigh-uptake capacity-enabled gas separation and fruit preservation by a new single-walled nickel–organic framework[J]. Advanced Science,2021,8:2003141.
    [12] Wang H, Shao Y, Mei S, et al. Polymer-derived heteroatom-doped porous carbon materials[J]. Chemical Reviews,2020,120:9363-9419.
    [13] Liang W, Zhang Y, Wang X, et al. Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene[J]. Chemical Engineering Science,2017,162:192-202.
    [14] Zhou Y, Chen C, Krishna R, et al. Tuning pore polarization to boost ethane/ethylene separation performance in hydrogen-bonded organic frameworks[J]. Angewandte Chemie International Edition,2023,62:e2023050.
    [15] Ye Y, Xie Y, Shi Y, et al. A microporous metal-organic framework with unique aromatic pore surfaces for high performance C2H6/C2H4 Separation[J]. Angewandte Chemie International Edition,2023,62:e2023025.
    [16] Gao Y Z, Xu S, Wang C T, et al. Preparation of molded biomass carbon from coffee grounds and its CH4/N2 separation performance[J]. New Carbon Materials,2022,37(6):1145-1153.
    [17] Hunter R D, Ramírez-Rico J, Schnepp Z, et al. Iron-catalyzed graphitization for the synthesis of nanostructured graphitic carbons[J]. Journal of Materials Chemistry A,2022,10:4489-4516.
    [18] Tang S Y, Wang Y S, Yuan Y F, et al. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting[J]. New Carbon Materials,2022,37(1):237-244.
    [19] Xu S, Li W C, Wang C, et al. Beyond the selectivity-capacity trade-off: ultrathin carbon nanoplates with easily accessible ultramicropores for high-efficiency propylene/propane separation[J]. Nano Letters,2022,22:6615-6621.
    [20] Wang T, Sun Y, Zhang L, et al. Space-confined polymerization: controlled fabrication of nitrogen-doped polymer and carbon microspheres with refined hierarchical architectures[J]. Advanced Materials,2019,31(16):1807876.
    [21] Xu Shuang, Li W C, Wang C T, et al. Self-pillared ultramicroporous carbon nanoplates for selective separation of CH4/N2[J]. Angewandte Chemie International Edition,2021,133:6409-6413.
    [22] Pires J, Fernandes J, Dedecker K, et al. Enhancement of ethane selectivity in ethane–ethylene mixtures by perfluoro groups in Zr-based metal-organic frameworks[J]. ACS Applied Materials & Interfaces Research,2019,11(30):27410-27421.
    [23] Yuan W, Zhang X, Li L, et al. Synthesis of zeolitic imidazolate framework-69 for adsorption separation of ethane and ethylene[J]. Journal of Solid State Chemistry,2017,251:198-203.
    [24] Chen D L, Wang N, Xu C, et al. A combined theoretical and experimental analysis on transient breakthroughs of C2H6/C2H4 in fixed beds packed with ZIF-7[J]. Microporous and Mesoporous Materials,2015,281(15):55-65.
    [25] Zhu B, Cao J W, Mukherjee S, et al. Pore engineering for one-step ethylene purification from a three-component hydrocarbon mixture[J]. Journal of the American Chemical Society,2021,143(3):1485-1492.
    [26] Yang H, Wang Y, Krishna R, et al. Pore-space-partition-enabled exceptional ethane uptake and ethane-selective ethane–ethylene separation[J]. Journal of the American Chemical Society,2020,142(5):2222-2227.
    [27] Xiang H, Shao Y, Ameen A, et al. Adsorptive separation of C2H6/C2H4 on metal-organic frameworks (MOFs) with pillared-layer structures[J]. Separation and Purification Technology,2020,242:116819.
    [28] Li L, Lin R B, Krishna R, et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science,2018,362(6413):443-446.
    [29] Liao P, Zhang W, Zhang J, et al. Effcient purifcation of ethene by an ethane-trapping metal-organic framework[J]. Nature Communication,2015,6:8697.
    [30] Wang X, Wu Y, Peng J, et al. Novel glucosamine-based carbon adsorbents with high capacity and its enhanced mechanism of preferential adsorption of C2H6 over C2H4[J]. Chemical Engineering Journal,2019,358:1114-1125.
    [31] Qazvini O T, Babarao R, Shi Z L, et al. A robust ethane-trapping metal–organic framework with a high capacity for ethylene purification[J]. Journal of the American Chemical Society,2019,141(12):5014-5020.
    [32] Qazvini O T, Babarao R, Shi Z L, et al. Ethane-selective carbon composites CPDA@A-Acs with high uptake and its enhanced ethane/ethylene adsorption selectivity[J]. AIChE Journal,2018,64(9):3390-3399.
    [33] Bohme U, Barth B, Paula C, Kuhnt A, et al. Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8[J]. Langmuir,2013,29(27):8592-600.
    [34] Pires J, Pinto M L, Saini V K, Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12093-12099.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  13
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 录用日期:  2024-04-30
  • 修回日期:  2024-04-30
  • 网络出版日期:  2024-05-07

目录

    /

    返回文章
    返回