留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of the synthesis, characterization, and mechanism of bimetallic catalysts for electrocatalytic CO2 reduction

LIAO Yin-li HUANG Heng-bo ZOU Ru-yu SHEN Shu-ling LIU Xin-juan TANG Zhi-hong

廖银丽, 黄恒波, 邹如玉, 沈淑玲, 刘心娟, 唐志红. 双金属电催化CO2还原催化剂的合成、表征和机理研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60860-7
引用本文: 廖银丽, 黄恒波, 邹如玉, 沈淑玲, 刘心娟, 唐志红. 双金属电催化CO2还原催化剂的合成、表征和机理研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60860-7
LIAO Yin-li, HUANG Heng-bo, ZOU Ru-yu, SHEN Shu-ling, LIU Xin-juan, TANG Zhi-hong. A review of the synthesis, characterization, and mechanism of bimetallic catalysts for electrocatalytic CO2 reduction. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60860-7
Citation: LIAO Yin-li, HUANG Heng-bo, ZOU Ru-yu, SHEN Shu-ling, LIU Xin-juan, TANG Zhi-hong. A review of the synthesis, characterization, and mechanism of bimetallic catalysts for electrocatalytic CO2 reduction. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60860-7

双金属电催化CO2还原催化剂的合成、表征和机理研究进展

doi: 10.1016/S1872-5805(24)60860-7
详细信息
    通讯作者:

    唐志红,副教授. E-mail:zhtang@usst.edu.cn

  • 中图分类号: TB33

A review of the synthesis, characterization, and mechanism of bimetallic catalysts for electrocatalytic CO2 reduction

More Information
  • 摘要: 电催化二氧化碳还原反应(CO2RR)是一种将CO2转化为有价值的化学品的有效方法。然而,CO2的转化是一个复杂的过程,涉及2、4、6、8和12等多电子转移步骤。因此,开发高效的催化剂以精确控制CO2转化过程中的电子转移数目具有重要意义。单金属催化剂存在活性位点单一、反应动力学慢、产物选择性低和稳定性不足等缺点。双金属催化剂因其独特的结构和优异的性能而受到广泛关注。通过引入次金属,可以改变催化剂的电子结构,促进新的活性位点的形成,从而优化中间体与活性位点之间的相互作用。因此,本文综述了以炭材料为基底的单原子双金属催化剂和合金、异质结构等非原子级的双金属催化剂以及它们的制备方法、结构表征和催化产物,归纳双金属催化剂的催化机理。最后,提出CO2RR中遇到的挑战并对今后的发展进行展望。
  • Figure  1.  Overview on the categories of bimetallic electrocatalysts

    Figure  2.  (a) Schematic of the preparation process of Fe1-N4-C and Fe2-N6-C-o. Reproduced by permission of American Chemical Society[31]. (b) The aberration-corrected high-angle annular dark field scanning transmission electron microscopy (AC-HAADF-STEM) image of Fe2-N6-C-o. Reproduced by permission of American Chemical Society[31]. (c) Schematics representing the synthesis method used to prepare undercoordinated Ni-Nx and Fe-Nx active sites. Reproduced by permission of American Chemical Society[35]. (d) HAADF-STEM images for one-step synthesized Ni, Fe-hG. Reproduced by permission of American Chemical Society[35]. (e, f) High-resolution TEM (HRTEM) images of Cu@Ag-2. Reproduced by permission of Wiley-VCH[40]. (g) FEs of CO and C2 for the Cu@Ag. Reproduced by permission of Wiley-VCH[40]

    Figure  3.  (a) Synthesis schematic of Ni/Cu―N―C. Reproduced by permission of American Chemical Society[44]. (b) The schematic diagram of the synthesis mechanism of CuO/Ni SAs tandem catalyst. Reproduced by permission of Elsevier[46]. (c) Scheme for the synthesis of CuFe/N―C. Reproduced by permission of Elsevier[32]. (d) Magnified HAADF-STEM image of CuFe/N―C. Reproduced by permission of Elsevier[32]

    Figure  4.  (a) Synthesis schematic of Ni/Fe-N/O-C. Reproduced by permission of Wiley-VCH[48]. (b) Schematic of the synthesis route of ZnO-Ag@UC. Reproduced by permission of American Chemical Society[49]. (c) HRTEM image and (d) HAADF-STEM image of ZnO-Ag@UC. Reproduced by permission of American Chemical Society[49]. (e, f) SEM images of Cu-Sn foams. Reproduced by permission of Elsevier[50]. (g) Schematic diagram of dynamic hydrogen bubble template (DHBT) method. Reproduced by permission of American Chemical Society[51]

    Figure  5.  Enlarged HAADF-STEM image of (a) Ag1-G and (b)Ag2-G. Reproduced by permission of Elsevier[55]. (c, d) Zoom-in HAADF-STEM images of Ni/Fe-N-C. Reproduced by permission of Wiley-VCH[45]

    Figure  6.  (a, b) Fe and Co K-edge XANES spectra, (c, d) fit of the R-space EXAFS, and (e, f) the Fourier-transform R-space fitting for the sample p-FeNC@CoNC (denoted as FeCo), respectively. Reproduced by permission of Wiley-VCH[63]. (g) XANES and (h) EXAFS spectra of a-CuTi@Cu before and after CO2RR. Reproduced by permission of Wiley-VCH[64]

    Figure  7.  (a) Potential-dependent operando Raman spectra of the od-Pd9Cu91 foam sample. Reproduced by permission of Royal Society of Chemistry[65]. (b) In situ Raman spectroscopy of AgI-CuO catalysts. Reproduced by permission of Wiley-VCH[36]. (c) In-situ Cu K-edge XANES and corresponding first derivative XANES. Reproduced by permission of Wiley-VCH[36]. (d) In-situ Fourier-transform k2-weighted EXAFS spectra of AgI-CuO catalysts. Reproduced by permission of Wiley-VCH[36]. In-situ ATR-IR spectra of (e) Au-Cu Janus NSs and (f) Cu nanoparticles. Reproduced by permission of Wiley-VCH[66]

    Figure  8.  (a) The pathway diagram for the reduction of CO2 to CO. (b) The pathway diagram for the reduction of CO2 to HCOOH

    Figure  9.  (a) The FECO at a fixed potential, (b) Tafel plots, and (c) Electrochemical impedance spectra (EIS) of MOF Ni-Fe, MOF-Ni and MOF-Fe. Reproduced by permission of John Wiley & Sons[69]. (d) AC-HAADF-STEM image of Au1Ni1/CNFs. Reproduced by permission of Elsevier[71]. (e) The corresponding fast Fourier transform (FFT) pattern and STEM-EDX elemental mapping images of Au1Ni1 NPs including the Au, Ni and the mixed Au and Ni elements. Reproduced by permission of Elsevier[71]. (f) The FECO for Au/CNFs, Ni/CNFs and AuNi/CNFs. Reproduced by permission of Elsevier[71]. (g) Normalized XANES spectra at the Ni K-edge of the Au1Ni1/CNFs with compared to Ni and NiO reference. Reproduced by permission of Elsevier[71]. (h) k3-weighted Fourier transform EXAFS spectra in the R space of Au1Ni1/CNFs in comparison to Ni reference. Reproduced by permission of Elsevier[71]. (i) Free energy diagrams for CO2RR pathways on Au (111) and AuNi (111) model catalyst surface. Reproduced by permission of Elsevier[71]

    Figure  10.  (a) Faraday efficiencies for CO2RR on CnxSny CC catalysts at −0.8V vs. RHE. Reproduced by permission of Elsevier[76]. (b) Faraday efficiencies for CO2RR on CnxSny CC catalysts from −0.65 to −1.00 V vs. RHE. Reproduced by permission of Elsevier[76]. (c) Calculation of texture coefficients based on GIXRD data. Reproduced by permission of Elsevier[77]. (d) Correlation curve between texture coefficients and FEHCOOH in the In (101) plane at −1.2 V vs. RHE. Reproduced by permission of Elsevier[77]. (e) The FE for different productions and current density for HCOOH production at selected potentials on In1.5Cu0.5 NPs. Reproduced by permission of Elsevier[77]. (f) Stability of In1.5Cu0.5 NPs in 0.1 mol L−1 KHCO3. Reproduced by permission of Elsevier[77]

    Figure  11.  (a) FEs of C2 products obtained by using different catalysts. Reproduced by permission of Wiley-VCH[89]. (b) C2 product partial current density of different catalysts. Reproduced by permission of Wiley-VCH[89]. (c) Catalytic mechanism diagram. Reproduced by permission of Wiley-VCH[89]. (d) Operando SR-FTIR spectroscopy. Reproduced by permission of American Chemical Society[38]. (e) The FE of CO2RR liquid phase products for different CuAg samples at the total current density of 10 mA/cm2. Reproduced by permission of American Chemical Society[38]. (f) Proposed reaction mechanisms on Cu and CuAg samples during CO2RR. Reproduced by permission of American Chemical Society[38]. (g) TEM images of Ag65-Cu35 JNS-100. Reproduced by permission of Wiley-VCH[37]. (h) Comparison of FEC2H4 between Ag65-Cu35 JNS-100 and Cu NCs at different potentials. Reproduced by permission of Wiley-VCH[37]. (i) Fabrication of PTF(Ni)/Cu. Reproduced by permission of John Wiley & Sons[96]. (j) FEs of C2H4 and CH4 at different potentials on PTF(Ni)/Cu and PTF/Cu catalysts. reproduced by permission of John Wiley & Sons[96]

    Table  1.   The standard potentials of CO2RR at ambient conditions

    Transferred
    electron
    number
    Half electrochemical thermodynamic reactionsE°/V(vs. SHE)
    1eCO2 + e → CO2−1.90
    2eCO2 + 2H+ + 2e → CO + H2O−0.53
    2CO2 + 2H+ + 2e → HCOOH−0.61
    2CO2 + 2H+ + 2e → H2C2O4−0.91
    4eCO2 + 4H+ + 4e → HCHO + H2O−0.48
    6eCO2 + 6H+ + 6e →CH3OH + H2O−0.38
    8eCO2 + 8H+ + 8e →CH4 + 2H2O−0.24
    12e2CO2 + 12H+ + 12e →C2H4 + 4H2O−0.35
    2CO2 + 12H+ + 12e →C2H5OH + 3H2O−0.33
    14e2CO2 + 14H+ + 14e →C2H6 + 4H2O−0.27
    18e3CO2 + 18H+ + 18e →C3H7OH + 3H2O−0.31
    下载: 导出CSV
  • [1] Wang Y, Tang Z, Shen S, et al. The influence of heteroatom doping on the performance of carbon-based electrocatalysts for oxygen evolution reactions[J]. New Carbon Materials,2022,37(2):321-336. doi: 10.1016/S1872-5805(22)60591-2
    [2] Wang H, Zhao Y, Yang Z, et al. Oxygen-incorporated carbon nitride porous nanosheets for highly efficient photoelectrocatalytic CO2 reduction to formate[J]. New Carbon Materials,2022,37(6):1135-1142. doi: 10.1016/S1872-5805(22)60619-X
    [3] Qu T, Hu J, Dai X, et al. Electrospinning highly dispersed Ru nanoparticle-embedded carbon nanofibers boost CO2 reduction in a H2/CO2 fuel cell[J]. ACS Applied Materials & Interfaces,2021,13(20):23523-23531.
    [4] Ren M, Guo X and Huang S. Coordination-tuned Fe single-atom catalyst for efficient CO2 electroreduction: The power of B atom[J]. Chemical Engineering Journal,2022,433:134270. doi: 10.1016/j.cej.2021.134270
    [5] Lai W, Ma Z, Zhang J, et al. Dynamic evolution of active sites in electrocatalytic CO2 reduction reaction: Fundamental understanding and recent progress[J]. Advanced Functional Materials,2022,32(16):2111193. doi: 10.1002/adfm.202111193
    [6] Dai S, Huang T, Liu W, et al. Enhanced CO2 electrochemical reduction performance over Cu@AuCu catalysts at high noble metal utilization efficiency[J]. Nano Letters,2021,21(21):9293-9300. doi: 10.1021/acs.nanolett.1c03483
    [7] Zhi W, Liu Y, Shan S, et al. Efficient electroreduction of CO2 to C2-C3 products on Cu/Cu2O@N-doped graphene[J]. Journal of CO2 Utilization,2021,50:101594. doi: 10.1016/j.jcou.2021.101594
    [8] Xiong L, Zhang X, Chen L, et al. Geometric modulation of local CO flux in Ag@Cu2O nanoreactors for steering the CO2RR pathway toward high-efficacy methane production[J]. Advanced Materials,2021,33(32):e2101741. doi: 10.1002/adma.202101741
    [9] Beheshti M, Kakooei S, Ismail M C, et al. Investigation of CO2 electrochemical reduction to syngas on Zn/Ni-based electrocatalysts using the cyclic voltammetry method[J]. Electrochimica Acta,2020,341:135976. doi: 10.1016/j.electacta.2020.135976
    [10] Wei B, Hao J, Ge B, et al. Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic-nitrogen rich ultrathin carbon nanosheets[J]. Journal of Colloid and Interface Science,2022,608:2650-2659. doi: 10.1016/j.jcis.2021.10.189
    [11] Nie W and McCrory C C L. Strategies for breaking molecular scaling relationships for the electrochemical CO2 reduction reaction[J]. Dalton Transactions,2022,51(18):6993-7010. doi: 10.1039/D2DT00333C
    [12] Cao Z, Liu S, Xu K, et al. Predictable interfacial mass transfer intensification of Sn–N doped multichannel hollow carbon nanofibers for the CO2 electro-reduction reaction[J]. Sustainable Energy & Fuels,2021,5(12):3097-3101.
    [13] Wei X, Xiao S, Wu R, et al. Activating COOH* intermediate by Ni/Ni3ZnC0.7 heterostructure in porous N-doped carbon nanofibers for boosting CO2 electroreduction[J]. Applied Catalysis B: Environmental,2022,302:120861. doi: 10.1016/j.apcatb.2021.120861
    [14] Bagchi D, Sarkar S, Singh A K, et al. Potential- and time-dependent dynamic nature of an oxide-derived PdIn nanocatalyst during electrochemical CO2 reduction[J]. ACS Nano,2022,16(4):6185-6196. doi: 10.1021/acsnano.1c11664
    [15] Zhao Z and Lu G. Circumventing the scaling relationship on bimetallic monolayer electrocatalysts for selective CO2 reduction[J]. Chemical Science,2022,13(13):3880-3887. doi: 10.1039/D2SC00135G
    [16] Zhang W, Zeng J, Liu H, et al. CoxNi1−x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction[J]. Journal of Catalysis,2019,372:277-286. doi: 10.1016/j.jcat.2019.03.014
    [17] Huang J E, Li F, Adnan O, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science,2021,372(6546):1074-1078. doi: 10.1126/science.abg6582
    [18] Zou J, Lee C Y and Wallace G G. Boosting formate production from CO2 at high current densities over a wide electrochemical potential window on a SnS catalyst[J]. Advanced Science,2021,8(15):e2004521. doi: 10.1002/advs.202004521
    [19] An B, Zhou J, Zhu Z, et al. Uncovering the coordination effect on the Ni single-atom catalysts for CO2 reduction including vacancy defect and non-vacancy defect structures[J]. Fuel,2022,310:122472. doi: 10.1016/j.fuel.2021.122472
    [20] Cheng H, Wu X, Li X, et al. Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction[J]. Chemical Engineering Journal,2021,407:126842. doi: 10.1016/j.cej.2020.126842
    [21] Kumar A, Vashistha V K, Das D K, et al. M-N-C-based single-atom catalysts for H2, O2 & CO2 electrocatalysis: Activity descriptors, active sites identification, challenges and prospects[J]. Fuel,2021,304:121420. doi: 10.1016/j.fuel.2021.121420
    [22] Yang H, Wang X, Wang S, et al. Double boosting single atom Fe–N4 sites for high efficiency O2 and CO2 electroreduction[J]. Carbon,2021,182:109-116. doi: 10.1016/j.carbon.2021.05.038
    [23] Jia Y, Li F, Fan K, et al. Cu-based bimetallic electrocatalysts for CO2 reduction[J]. Advanced Powder Materials,2022,1(1):100012. doi: 10.1016/j.apmate.2021.10.003
    [24] Ouyang Y, Shi L, Bai X, et al. Breaking scaling relations for efficient CO2 electrochemical reduction through dual-atom catalysts[J]. Chemical Science,2020,11(7):1807-1813. doi: 10.1039/C9SC05236D
    [25] Wei X, Wei S, Cao S, et al. Cu acting as Fe activity promoter in dual-atom Cu/Fe-NC catalyst in CO2RR to C1 products[J]. Applied Surface Science,2021,564:150423. doi: 10.1016/j.apsusc.2021.150423
    [26] Gao Y, Xiao H, Ma X, et al. Gallium-indium bimetal sites in the indium-gallium metal organic framework for efficient electrocatalytic reduction of carbon dioxide into formate[J]. Journal of Materials Chemistry A, 2024.
    [27] Hu J, Yang F, Qu J, et al. Synergetic bimetallic catalysts: a remarkable platform for efficient conversion of CO2 to high value-added chemicals[J]. Journal of Energy Chemistry,2023,87:162-191. doi: 10.1016/j.jechem.2023.08.009
    [28] Chen Y, Li X Y, Chen Z, et al. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis[J]. Nature Nanotechnology,2024,19(3):311-318. doi: 10.1038/s41565-023-01543-8
    [29] Zhang B A and Nocera D G. Cascade electrochemical reduction of carbon dioxide with bimetallic nanowire and foam electrodes[J]. ChemElectroChem,2021,8(10):1918-1924. doi: 10.1002/celc.202100295
    [30] Zhang W, Chao Y, Zhang W, et al. Emerging dual-atomic-site catalysts for efficient energy catalysis[J]. Advanced Materials,2021,33(36):e2102576. doi: 10.1002/adma.202102576
    [31] Wang Y, Park B J, Paidi V K, et al. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction[J]. ACS Energy Letters,2022,7(2):640-649. doi: 10.1021/acsenergylett.1c02446
    [32] Wang F, Xie H, Liu T, et al. Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential[J]. Applied Energy,2020,269:115029. doi: 10.1016/j.apenergy.2020.115029
    [33] Liu K, Li J, Liu Y, et al. Dual metal atom catalysts: Advantages in electrocatalytic reactions[J]. Journal of Energy Chemistry,2023,79:515-534. doi: 10.1016/j.jechem.2023.01.021
    [34] Guo Z, Zhu H, Yang G, et al. Synergistic engineering of heteronuclear Ni-Ag dual-atom catalysts for high-efficiency CO2 electroreduction with nearly 100% CO selectivity[J]. Chemical Engineering Journal,2023,476:146556. doi: 10.1016/j.cej.2023.146556
    [35] Leverett J, Daiyan R, Gong L, et al. Designing undercoordinated Ni-Nx and Fe-Nx on holey graphene for electrochemical CO2 conversion to syngas[J]. ACS Nano,2021,15(7):12006-12018. doi: 10.1021/acsnano.1c03293
    [36] Yang R, Duan J, Dong P, et al. In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products[J]. Angewandte Chemie International Edition,2022,61(21):e202116706. doi: 10.1002/anie.202116706
    [37] Ma Y, Yu J, Sun M, et al. Confined growth of silver-copper janus nanostructures with (100) facets for highly selective tandem electrocatalytic carbon dioxide reduction[J]. Advanced Materials,2022,34(19):e2110607. doi: 10.1002/adma.202110607
    [38] Xu Y, Li C, Xiao Y, et al. Tuning the selectivity of liquid products of CO2RR by Cu-Ag alloying[J]. ACS Applied Materials & Interfaces,2022,14(9):11567-11574.
    [39] Wang J, Cheng C, Huang B, et al. Grain-boundary-engineered La2CuO4 perovskite nanobamboos for efficient CO2 reduction reaction[J]. Nano Letters,2021,21(2):980-987. doi: 10.1021/acs.nanolett.0c04004
    [40] Zhang S, Zhao S, Qu D, et al. Electrochemical reduction of CO2 toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness[J]. Small,2021,17(37):e2102293. doi: 10.1002/smll.202102293
    [41] Yang Z, Wang H, Bi X, et al. Bimetallic In2O3/Bi2O3 catalysts enable highly selective CO2 electroreduction to formate within ultra-broad potential windows[J]. Energy & Environmental Materials,2023,7:e12508.
    [42] Ying Y, Luo X, Qiao J, et al. “More is different: ” Synergistic effect and structural engineering in double-atom catalysts[J]. Advanced Functional Materials,2020,31(3):2007423.
    [43] Ji S, Chen Y, Wang X, et al. Chemical synthesis of single atomic site catalysts[J]. Chemical Reviews,2020,120(21):11900-11955. doi: 10.1021/acs.chemrev.9b00818
    [44] Cheng H, Wu X, Feng M, et al. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction[J]. ACS Catalysis,2021,11(20):12673-12681. doi: 10.1021/acscatal.1c02319
    [45] Ren W, Tan X, Yang W, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2[J]. Angewandte Chemie International Edition,2019,58(21):6972-6976. doi: 10.1002/anie.201901575
    [46] Zhang Y, Li P, Zhao C, et al. Multicarbons generation factory: CuO/Ni single atoms tandem catalyst for boosting the productivity of CO2 electrocatalysis[J]. Science Bulletin,2022,67(16):1679-1687. doi: 10.1016/j.scib.2022.07.029
    [47] Zhao D, Zhuang Z, Cao X, et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation[J]. Chemical Society Reviews,2020,49(7):2215-2264. doi: 10.1039/C9CS00869A
    [48] Gong Q, Wang Y, Ren X, et al. Ultra-low-loaded Ni-Fe dimer anchored to nitrogen/oxygen sites for boosting electroreduction of carbon dioxide[J]. ChemSusChem,2021,14(20):4499-4506. doi: 10.1002/cssc.202101302
    [49] Zhang Z, Wen G, Luo D, et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction[J]. Journal of the American Chemical Society,2021,143(18):6855-6864. doi: 10.1021/jacs.0c12418
    [50] Zeng J, Bejtka K, Ju W, et al. Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution[J]. Applied Catalysis B: Environmental,2018,236:475-482. doi: 10.1016/j.apcatb.2018.05.056
    [51] Rahaman M, Kiran K, Zelocualtecatl Montiel I, et al. Suppression of the hydrogen evolution reaction is the key: Selective electrosynthesis of formate from CO2 over porous In55Cu45 catalysts[J]. ACS Applied Materials & Interfaces,2021,13(30):35677-35688.
    [52] Nellist P D and Pennycook S J. Incoherent imaging using dynamically scattered coherent electrons[J]. Ultramicroscopy,1998,78(1-4):111-124.
    [53] Loos J J, Sourty E E, Lu K K, et al. Imaging polymer systems with high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM)[J]. Macromolecules,2009,42(7):2581-2586. doi: 10.1021/ma8026589
    [54] Zhang N, Zhang X, Kang Y, et al. A supported Pd2 dual-atom site Catalyst for efficient electrochemical CO2 reduction[J]. Angewandte Chemie International Edition,2021,60(24):13388-13393. doi: 10.1002/anie.202101559
    [55] Li Y, Chen C, Cao R, et al. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO[J]. Applied Catalysis B: Environmental,2020,268:118747. doi: 10.1016/j.apcatb.2020.118747
    [56] Groot F M F d. Site-selective XAFS: A new tool for catalysis research[J]. Topics in Catalysis,2020,10(3-4):179-186.
    [57] Oversteeg C H M v, Doan H Q, Groot F M F d, et al. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts[J]. Chemical Society Reviews,2017,46(1):102-125. doi: 10.1039/C6CS00230G
    [58] Zhao S, Yang Y and Tang Z. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts[J]. Angewandte Chemie International Edition,2022,61(11):e202110186. doi: 10.1002/anie.202110186
    [59] Luo Z, Yin Z, Yu J, et al. General synthetic strategy to ordered mesoporous carbon catalysts with single-atom metal sites for electrochemical CO2 reduction[J]. Small,2022,18(16):e2107799. doi: 10.1002/smll.202107799
    [60] Koide A, Fujikawa T and Ichikuni N. Recent progress in EXAFS/NEXAFS spectroscopy[J]. Journal of Electron Spectroscopy and Related Phenomena,2014,195:375-381. doi: 10.1016/j.elspec.2013.11.007
    [61] Lytle F W. The EXAFS family tree: A personal history of the development of extended X-ray absorption fine structure[J]. Journal of Synchrotron Radiation,1999,6:123-134. doi: 10.1107/S0909049599001260
    [62] Frenkel A I. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts[J]. Chemical Society Reviews,2012,41(24):8163-8178. doi: 10.1039/c2cs35174a
    [63] Yang X, Wang M, Zachman M J, et al. Binary atomically dispersed metal-site catalysts with core-shell nanostructures for O2 and CO2 reduction reactions[J]. Small Science,2021,1(10):2100046. doi: 10.1002/smsc.202100046
    [64] Hu F, Yang L, Jiang Y, et al. Ultrastable Cu catalyst for CO2 electroreduction to multicarbon liquid fuels by tuning C-C coupling with CuTi subsurface[J]. Angewandte Chemie International Edition,2021,60(50):26122-26127. doi: 10.1002/anie.202110303
    [65] Rahaman M, Kiran K, Montiel I Z, et al. Selective n-propanol formation from CO2 over degradation-resistant activated PdCu alloy foam electrocatalysts[J]. Green Chemistry,2020,22(19):6497-6509. doi: 10.1039/D0GC01636E
    [66] Zheng Y, Zhang J, Ma Z, et al. Seeded growth of gold-copper janus nanostructures as a tandem catalyst for efficient electroreduction of CO2 to C2+ products[J]. Small,2022,18(19):e2201695. doi: 10.1002/smll.202201695
    [67] Liu W, Wang K, Gong L, et al. Edge-located Fe-N4 sites on porous graphene-like nanosheets for boosting CO2 electroreduction[J]. Chemical Engineering Journal,2022,431:134269. doi: 10.1016/j.cej.2021.134269
    [68] Liu C, Mei X, Han C, et al. Tuning strategies and structure effects of electrocatalysts for carbon dioxide reduction reaction[J]. Chinese Journal of Catalysis,2022,43(7):1618-1633. doi: 10.1016/S1872-2067(21)63965-7
    [69] Iqbal R, Akbar M B, Ahmad A, et al. Exploring the synergistic effect of novel Ni-Fe in 2D bimetallic metal-organic frameworks for enhanced electrochemical reduction of CO2[J]. Advanced Materials Interfaces,2021,9(1):2101505.
    [70] Zhang H, Wang H, Jia S, et al. CoN4 active sites in a graphene matrix for the highly efficient electrocatalysis of CO2 reduction[J]. New Carbon Materials,2022,37(4):734-742. doi: 10.1016/S1872-5805(21)60061-6
    [71] Hao J, Zhu H, Li Y, et al. Tuning the electronic structure of AuNi homogeneous solid-solution alloy with positively charged Ni center for highly selective electrochemical CO2 reduction[J]. Chemical Engineering Journal,2021,404:126523. doi: 10.1016/j.cej.2020.126523
    [72] Jouny M, Luc W and Jiao F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research,2018,57(6):2165-2177.
    [73] Yang Zhongxue, Wang Hongzhi, Fei Xiang, et al. MOF derived bimetallic CuBi catalysts with ultra-wide potential window for high-efficient electrochemical reduction of CO2 to formate[J]. Applied Catalysis B: Environmental 2021, 298 120571.
    [74] Li W, Yu C, Tan X, et al. Recent advances in the electroreduction of carbon dioxide to formic acid over carbon-based materials[J]. New Carbon Materials,2022,37(2):277-287. doi: 10.1016/S1872-5805(22)60592-4
    [75] Chen C, Sun M, Wang K, et al. Dual-metal single-atomic catalyst: The challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis[J]. SmartMat,2022,3(4):533-564. doi: 10.1002/smm2.1085
    [76] Li H, Yue X, Qiu Y, et al. Selective electroreduction of CO2 to formate over the co-electrodeposited Cu/Sn bimetallic catalyst[J]. Materials Today Energy,2021,21:100797. doi: 10.1016/j.mtener.2021.100797
    [77] Wei B, Xiong Y, Zhang Z, et al. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet[J]. Applied Catalysis B: Environmental,2021,283:119646. doi: 10.1016/j.apcatb.2020.119646
    [78] Liu Y, Zhu H, Zhao Z, et al. Insight into the effect of the d-orbital energy of copper ions in metal–organic frameworks on the selectivity of electroreduction of CO2 to CH4[J]. ACS Catalysis,2022,12(5):2749-2755. doi: 10.1021/acscatal.1c04805
    [79] Wu Y, Jiang Z, Lu X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature,2019,575(7784):639-642. doi: 10.1038/s41586-019-1760-8
    [80] Farooqi S A, Farooqi A S, Sajjad S, et al. Electrochemical reduction of carbon dioxide into valuable chemicals: a review[J]. Environmental Chemistry Letters,2023,21(3):1515-1553. doi: 10.1007/s10311-023-01565-7
    [81] Liu S, Zhang B, Zhang L, et al. Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products[J]. Journal of Energy Chemistry,2022,71:63-82. doi: 10.1016/j.jechem.2022.03.041
    [82] Dutta A, Montiel I Z, Erni R, et al. Activation of bimetallic AgCu foam electrocatalysts for ethanol formation from CO2 by selective Cu oxidation/reduction[J]. Nano Energy,2020,68:104331. doi: 10.1016/j.nanoen.2019.104331
    [83] Wang W, Ma Z, Fei X, et al. Joint tuning the morphology and oxygen vacancy of Cu2O by ionic liquid enables high-efficient CO2 reduction to C2 products[J]. Chemical Engineering Journal,2022,436:135029. doi: 10.1016/j.cej.2022.135029
    [84] Pan Y, Li H, Xiong J, et al. Protecting the state of Cu clusters and nanoconfinement engineering over hollow mesoporous carbon spheres for electrocatalytical C-C coupling[J]. Applied Catalysis B: Environmental,2022,306:121111. doi: 10.1016/j.apcatb.2022.121111
    [85] Pham T H M, Zhang J, Li M, et al. Enhanced electrocatalytic CO2 reduction to C2+ products by adjusting the local reaction environment with polymer binders[J]. Advanced Energy Materials,2022,12(9):2103663. doi: 10.1002/aenm.202103663
    [86] Choukroun D, Pacquets L, Li C, et al. Mapping composition-selectivity relationships of supported sub-10 nm Cu-Ag nanocrystals for high-rate CO2 electroreduction[J]. ACS Nano,2021,15(9):14858-14872. doi: 10.1021/acsnano.1c04943
    [87] Mosali V S S, Li L, Puxty G, et al. Ultra-thin Pd and CuPd bimetallic alloy nanosheets for electrochemical reduction of CO2[J]. ChemElectroChem,2022,9(5):e202101227. doi: 10.1002/celc.202101227
    [88] Zhang X, Liu C, Zhao Y, et al. Atomic nickel cluster decorated defect-rich copper for enhanced C2 product selectivity in electrocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental,2021,291:120030. doi: 10.1016/j.apcatb.2021.120030
    [89] Jia H, Yang Y, Chow T H, et al. Symmetry-broken Au-Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction[J]. Advanced Functional Materials,2021,31(27):2101255. doi: 10.1002/adfm.202101255
    [90] Bi X, Yan Y, Wang H, et al. Electroreduction of CO2 to C2H4 regulated by spacing effect: mechanistic insights from DFT studies[J]. Energy Material Advances, 2023, 4.
    [91] Wang H, Bi X, Yan Y, et al. Efficient electrocatalytic reduction of CO2 to ethanol enhanced by spacing effect of Cu-Cu in Cu2-xSe nanosheets[J]. Advanced Functional Materials,2023,33:2214946. doi: 10.1002/adfm.202214946
    [92] Firet N J and Smith W A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy[J]. ACS Catalysis,2016,7(1):606-612.
    [93] Wang H, Bi X, Zhao Y, et al. Cu3N nanoparticles with both (100) and (111) facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene[J]. New Journal of Chemistry,2022,46(26):12523-12529. doi: 10.1039/D2NJ02175G
    [94] Calle Vallejo F and Koper M T. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes[J]. Angewandte Chemie International Edition,2013,52(28):7282-5. doi: 10.1002/anie.201301470
    [95] Schouten K J P, Gallent E P and Koper M T M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals[J]. ACS Catalysis,2013,3(6):1292-1295. doi: 10.1021/cs4002404
    [96] Meng D, Zhang M, Si D, et al. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts[J]. Angewandte Chemie International Edition,2021,60(48):25485-25492. doi: 10.1002/anie.202111136
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  21
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-28
  • 录用日期:  2024-04-30
  • 修回日期:  2024-04-30
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回