留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Controlled growth of a graphdiyne/cobalt hydroxide heterointerface for efficient chlorine production

LIU Hui-min LUAN Xiao-yu YAN Jia-yu BU Fan-le XUE Yu-rui LI Yu-liang

刘惠敏, 栾晓雨, 闫佳玉, 卜凡乐, 薛玉瑞, 李玉良. 可控生长石墨炔/氢氧化钴异质界面用于高效产氯. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60861-9
引用本文: 刘惠敏, 栾晓雨, 闫佳玉, 卜凡乐, 薛玉瑞, 李玉良. 可控生长石墨炔/氢氧化钴异质界面用于高效产氯. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60861-9
LIU Hui-min, LUAN Xiao-yu, YAN Jia-yu, BU Fan-le, XUE Yu-rui, LI Yu-liang. Controlled growth of a graphdiyne/cobalt hydroxide heterointerface for efficient chlorine production. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60861-9
Citation: LIU Hui-min, LUAN Xiao-yu, YAN Jia-yu, BU Fan-le, XUE Yu-rui, LI Yu-liang. Controlled growth of a graphdiyne/cobalt hydroxide heterointerface for efficient chlorine production. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60861-9

可控生长石墨炔/氢氧化钴异质界面用于高效产氯

doi: 10.1016/S1872-5805(24)60861-9
基金项目: 国家自然科学基金基础科学中心项目(22388101);国家重点研发计划项目(2022YFA1204500, 2022YFA1204501, 2022YFA1204503,2018YFA0703501);山东省泰山学者青年专家项目(tsqn201909050);山东省自然科学基金(ZR2020ZD38, ZR2021JQ07)
详细信息
    通讯作者:

    薛玉瑞,教授. E-mail:yrxue@sdu.edu.cn

    李玉良,教授. E-mail:ylli@iccas.ac.cn

  • 中图分类号: TQ127.1+1

Controlled growth of a graphdiyne/cobalt hydroxide heterointerface for efficient chlorine production

Funds: This work was supported by the Basic Science Center Project of the National Natural Science Foundation of China (22388101), National Key Research and Development Project of China (2022YFA1204500, 2022YFA1204501, 2022YFA1204503, 2018YFA0703501), the Taishan Scholars Youth Expert Program of Shandong Province (tsqn201909050), and the Natural Science Foundation of Shandong Province (ZR2020ZD38, ZR2021JQ07)
More Information
  • 摘要: 氯碱工艺广泛应用于各种工业生产过程,在化工生产中起着关键和不可替代的作用。然而,目前所报道的析氯反应的电催化剂反应(CER)选择性和催化效率较低,显著限制了其实际应用。本文报道了在炭布基底表面生长氢氧化钴,随后再在其表面原位生长石墨炔(GDY/Co(OH)2)来可控制备高性能CER电催化剂的简单方法。在酸性模拟海水中,GDY/Co(OH)2在10 mA cm−2电流密度时的过电位仅为83 mV,最大法拉第效率(FE)为91.54%,氯产率高达157.11 mg h−1 cm−2。结果表明,GDY在Co(OH)2表面原位生长形成了GDY与金属Co原子之间具有强电子转移的界面结构,从而获得更高的导电性、更大的活性比表面积和更多的活性位点,进而提高了整体电催化的选择性和效率。
  • Figure  1.  Schematic illustration of the synthesis route for GDY/Co(OH)2

    Figure  2.  SEM images of (a-c) Co(OH)2 and (d-f) GDY/Co(OH)2. (g-i) Elemental mapping images of GDY/Co(OH)2

    Figure  3.  (a, b) HRTEM images of Co(OH)2. (c) SAED images of Co(OH)2. (d) Interface structure of GDY and Co(OH)2 in GDY/Co(OH)2. (e, f) Enlarged images in the yellow square of (d). (g) HRTEM images of Co(OH)2 phase in GDY/Co(OH)2. (h) SAED pattern of GDY/Co(OH)2. (i) Elemental distribution images of GDY/Co(OH)2

    Figure  4.  (a) Raman spectra of GDY and GDY/Co(OH)2. (b) The contact angle test for GDY/Co(OH)2 and CC. (c) Schematic of charge transfer between GDY and Co(OH)2. (d) High-resolution C 1s XPS spectra of GDY and GDY/Co(OH)2. (e) High-resolution Co 2p XPS spectra of Co(OH)2 and GDY/Co(OH)2. (f) High-resolution O 1s XPS spectra of Co(OH)2 and GDY/Co(OH)2. (g) Equivalent circuit model. (h) Electrochemical impedance spectra and(i) Double-layer capacitance test for GDY, Co(OH)2 and GDY/Co(OH)2

    Figure  5.  (a) Schematic of the electrolysis process. (b) LSV curves. (c) Overpotentials at a current density of 10 mA cm−2. (d) Tafel slopes for GDY/Co(OH)2 and its control samples. (e) Determination of standard curves for the detection of active chlorine. Comparison of (f) Faradaic efficiency of active chlorine at various potentials and (g) active chlorine yield at various potentials for GDY, Co(OH)2 and GDY/Co(OH)2. (h) Comparison of active chlorine yield at 2.1 V vs. RHE for GDY/Co(OH)2 with and without NaCl. (i) Comparison of catalytic performance

    Figure  6.  Comparison of (a) polarization curves, (b) high-resolution C 1s XPS spectra, (c) high-resolution Co 2p XPS spectra and (d) high-resolution O 1s XPS spectra of GDY/Co(OH)2 before and after 10 h of electrolysis of seawater for chlorine production

  • [1] Martinez-Huitle C A, Rodrigo M A, Sires I, Scialdone O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water[J]. Applied Catalysis B-Environmental,2023,328:122430. doi: 10.1016/j.apcatb.2023.122430
    [2] Kleoff M, Vossnacker P, Riedel S. The rise of trichlorides enabling an improved chlorine technology[J]. Angewandte Chemie-International Edition,2023,62(17):e202216586. doi: 10.1002/anie.202216586
    [3] Vossnacker P, Wüst A, Müller C, et al. Synthesis of a hexachloro sulfate(IV) dianion enabled by polychloride chemistry[J]. Angewandte Chemie-International Edition,2022,61(43):e202209684. doi: 10.1002/anie.202209684
    [4] Tang C, Zheng Y, Jaroniec M, Qiao S Z. Electrocatalytic refinery for sustainable production of fuels and chemicals[J]. Angewandte Chemie-International Edition,2021,60(36):19572-19590. doi: 10.1002/anie.202101522
    [5] Wang Y, Xue Y, Zhang C. Rational surface and interfacial engineering of IrO2/TiO2 nanosheet arrays toward high-performance chlorine evolution electrocatalysis and practical environmental remediation[J]. Small,2021,17(17):2006587. doi: 10.1002/smll.202006587
    [6] Menzel N, Ortel E, Mette K, et al. Dimensionally stable Ru/Ir/TiO2-anodes with tailored mesoporosity for efficient electrochemical chlorine evolution[J]. ACS Catalysis,2013,3(6):1324-1333.
    [7] He W, Li X, Tang C, et al. Materials design and system innovation for direct and indirect seawater electrolysis[J]. Acs Nano,2023,17(22):22227-22239.
    [8] Karlsson R K B, Cornell A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes[J]. Chemical Reviews,2016,116(5):2982-3028.
    [9] Yang J, Li W H, Tang H T, et al. CO2-mediated organocatalytic chlorine evolution under industrial conditions[J]. Nature,2023,617(7961):519-523.
    [10] Liu Y, Li C, Tan C, et al. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts[J]. Nature Communications,2023,14(1):2475-2475. doi: 10.1038/s41467-023-38129-w
    [11] Zhang X, Wu D, Liu X, et al. Efficient electrocatalytic chlorine evolution under neutral seawater conditions enabled by highly dispersed Co3O4 catalysts on porous carbon[J]. Applied Catalysis B: Environmental,2023,330:122594.
    [12] Fu X, Zhao X, Lu T B, et al. Graphdiyne-based single-atom catalysts with different coordination environments[J]. Angewandte Chemie-International Edition,2023,62(16):e202219242.
    [13] Gao X, Liu H, Wang D, Zhang J. Graphdiyne: Synthesis, properties and applications[J]. Chemical Society Reviews,2019,48(3):908-936. doi: 10.1039/C8CS00773J
    [14] Fang Y, Liu Y, Qi L, et al. 2D graphdiyne: An emerging carbon material[J]. Chemical Society Reviews,2022,51(7):2681-2709.
    [15] Zheng X, Chen S, Li J, et al. Two-dimensional carbon graphdiyne: Advances in fundamental and application research[J]. Acs Nano,2023,17(15):14309-14346. doi: 10.1021/acsnano.3c03849
    [16] Luan X, Qi L, Zheng Z, et al. Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries[J]. Angewandte Chemie-International Edition,2023,62(8):e202215968. doi: 10.1002/anie.202215968
    [17] Xing C, Xue Y, Zheng X, et al. Highly selective electrocatalytic olefin hydrogenation in aqueous solution[J]. Angewandte Chemie-International Edition,2023,62(41):e202310722. doi: 10.1002/anie.202310722
    [18] Zheng Z, Qi L, Gao Y, et al. Ir-0/graphdiyne atomic interface for selective epoxidation[J]. National Science Review,2023,10(8):nwad156. doi: 10.1093/nsr/nwad156
    [19] Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications,2010,46(19):3256-3258. doi: 10.1039/b922733d
    [20] Zhang D, Xue Y, Zheng X, et al. Multi-heterointerfaces for selective and efficient urea production[J]. National Science Review,2023,10(2):nwac209. doi: 10.1093/nsr/nwac209
    [21] Qi L, Gao Y, Gao Y, et al. Controlled growth of metal atom arrays on graphdiyne for seawater oxidation[J]. Journal of the American Chemical Society,2024,146(8):5669-5677. doi: 10.1021/jacs.3c14742
    [22] Liu Y, Gao Y, He F, et al. Controlled growth interface of charge transfer salts of nickel-7, 7, 8, 8-tetracyanoquinodimethane on surface of graphdiyne[J]. CCS Chemistry,2023,5(4):971-981. doi: 10.31635/ccschem.022.202202005
    [23] Zheng X, Xue Y, Zhang C, Li Y. Controlled growth of multidimensional interface for high-selectivity ammonia production[J]. CCS Chemistry,2023,5(7):1653-1662. doi: 10.31635/ccschem.022.202202189
    [24] Yang Q, Guo Y, Yan B, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes[J]. Advanced Materials,2020,32(25):2001755. doi: 10.1002/adma.202001755
    [25] Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries[J]. Angewandte Chemie-International Edition,2022,61(6):e202112304. doi: 10.1002/anie.202112304
    [26] Zhang S, Kong Y, Gu Y, et al. Strong d-π orbital coupling of Co-C4 atomic sites on graphdiyne boosts potassium-sulfur battery electrocatalysis[J]. Journal of the American Chemical Society,2024,146(7):4433-4443. doi: 10.1021/jacs.3c09533
    [27] Zheng X, Wu H, Gao Y, et al. Controllable assembly of highly oxidized cobalt on graphdiyne surface for efficient conversion of nitrogen into nitric acid[J]. Angewandte Chemie-International Edition,2024,63(9):e2023167.
    [28] Shi G, Xie Y, Du L, et al. Stabilization of cobalt clusters with graphdiyne enabling efficient overall water splitting[J]. Nano Energy,2020,74:104852. doi: 10.1016/j.nanoen.2020.104852
    [29] Gao Y, Qi L, He F, et al. Selectively growing a highly active interface of mixed Nb-Rh oxide/2D carbon for electrocatalytic hydrogen production[J]. Advanced Science,2022,9(10):2104706. doi: 10.1002/advs.202104706
    [30] Gao Y, Xue Y, Liu T, et al. Bimetallic mixed clusters highly loaded on porous 2D graphdiyne for hydrogen energy conversion[J]. Advanced Science,2021,8(24):2102777.
    [31] Gao Y, Xue Y, Qi L, et al. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water[J]. Nature Communications,2022,13(1):5227. doi: 10.1038/s41467-022-32937-2
    [32] Gao Y, Xue Y, Wu H, et al. Self-organized gradually single-atom-layer of metal osmium for an unprecedented hydrogen production from seawater [J]. Journal of the American Chemical Society, 2024:https://doi.org/10.1021/jacs.1024c00027.
    [33] Yang Q, Guo Y, Gu J, et al. Scalable synthesis of 2D hydrogen-substituted graphdiyne on Zn substrate for high-yield N2 fixation[J]. Nano Energy,2020,78:105283. doi: 10.1016/j.nanoen.2020.105283
    [34] Guo Y, Liu J, Yang Q, et al. Regulating nitrogenous adsorption and desorption on Pd clusters by the acetylene linkages of hydrogen substituted graphdiyne for efficient electrocatalytic ammonia synthesis[J]. Nano Energy,2021,86:106099. doi: 10.1016/j.nanoen.2021.106099
    [35] Guo Y, Liu J, Yang Q, et al. Metal-tuned acetylene linkages in hydrogen substituted graphdiyne boosting the electrochemical oxygen reduction[J]. Small,2020,16(10):1907341. doi: 10.1002/smll.201907341
    [36] Guo Y, Zhang R, Zhang S, et al. Steering sp-carbon content in graphdiynes for enhanced two-electron oxygen reduction to hydrogen peroxide [J]. Angewandte Chemie-International Edition, 2024: e202401501.
    [37] Shi G, Xie Y, Du L, et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4[J]. Angewandte Chemie-International Edition,2022,61(23):e202203569. doi: 10.1002/anie.202203569
    [38] Feng X, Liu J, Chen L, et al. Hydrogen radical-induced electrocatalytic N2 reduction at a low potential[J]. Journal of the American Chemical Society,2023,145(18):10259-10267. doi: 10.1021/jacs.3c01319
    [39] Hui L, Xue Y, Xing C, et al. Atomic alloys of nickel-platinum on carbon network for methanol oxidation[J]. Nano Energy,2022,95:106984. doi: 10.1016/j.nanoen.2022.106984
    [40] Hui L, Zhang X, Xue Y, et al. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst[J]. Journal of the American Chemical Society,2022,144(4):1921-1928. doi: 10.1021/jacs.1c12310
    [41] Zhang X, Hui L, Yan D, et al. Defect rich structure activated 3D palladium catalyst for methanol oxidation reaction[J]. Angewandte Chemie-International Edition,2023,62(40):e202308968. doi: 10.1002/anie.202308968
    [42] Zhong M X, Xu M J, Ren S Y, et al. Modulating the electronic structure of Ni(OH)2 by coupling with low-content Pt for boosting the urea oxidation reaction enables significantly promoted energy-saving hydrogen production[J]. Energy & Environmental Science,2024,17(5):1984-1996.
    [43] Song N, Ren S Y, Zhang Y, et al. Confinement of prussian blue analogs boxes inside conducting polymer nanotubes enables significantly enhanced catalytic performance for water treatment[J]. Advanced Functional Materials,2022,32(34):2204751. doi: 10.1002/adfm.202204751
    [44] Lin X, Zhang S-N, Xu D, et al. Electrochemical activation of C-H by electron-deficient W2C nanocrystals for simultaneous alkoxylation and hydrogen evolution[J]. Nature Communications,2021,12(1):3882. doi: 10.1038/s41467-021-24203-8
    [45] Xu D, Lin X, Li Q Y, et al. Boosting mass exchange between Pd/NC and MoC/NC dual junctions via electron exchange for cascade CO2 fixation[J]. Journal of the American Chemical Society,2022,144(12):5418-5423. doi: 10.1021/jacs.1c12986
    [46] Lin X, Zhou Z Y, Li Q Y, et al. Direct oxygen transfer from H2O to cyclooctene over electron-rich RuO2 nanocrystals for epoxidation and hydrogen evolution[J]. Angewandte Chemie-International Edition,2022,61(35):e202207108. doi: 10.1002/anie.202207108
    [47] Wang N, Song S Z, Wu W T, et al. Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers [J]. Advanced Energy Materials, 2024: 2303451.
    [48] Tang C, Chen L, Li H, et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres[J]. Journal of the American Chemical Society,2021,143(20):7819-7827. doi: 10.1021/jacs.1c03135
    [49] Tang C, Jiao Y, Shi B, et al. Coordination tunes selectivity: two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J]. Angewandte Chemie-International Edition,2020,59(23):9171-9176. doi: 10.1002/anie.202003842
    [50] Zhu X, Wang P, Wang Z, et al. Co3O4 nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction[J]. Journal of Materials Chemistry A,2018,6(26):12718-12723.
    [51] Xiao M, Wu Q, Ku R, et al. Self-adaptive amorphous CoOxCly electrocatalyst for sustainable chlorine evolution in acidic brine[J]. Nature Communications,2023,14(1):5356. doi: 10.1038/s41467-023-41070-7
    [52] Qi D, Xu J, Zhou Y, et al. Cyclodextrin-supported Co(OH)2 clusters as electrocatalysts for efficient and selective H2O2 synthesis[J]. Angewandte Chemie-International Edition,2023,62(37):e202307355. doi: 10.1002/anie.202307355
  • 加载中
图(6)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  15
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-17
  • 录用日期:  2024-05-04
  • 修回日期:  2024-05-01
  • 网络出版日期:  2024-05-09

目录

    /

    返回文章
    返回