留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
马子辉, 杨桃, 宋燕, 陈文胜, 段淳枫, 宋怀河, 田晓冬, 巩向杰, 刘正阳, 刘占军. 催化法制备中间相沥青的研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60862-0
引用本文: 马子辉, 杨桃, 宋燕, 陈文胜, 段淳枫, 宋怀河, 田晓冬, 巩向杰, 刘正阳, 刘占军. 催化法制备中间相沥青的研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60862-0
MA Zi-hui, YANG Tao, SONG Yan, CHEN Wen-sheng, DUAN Chun-feng, SONG Huai-he, TIAN Xiao-dong, GONG Xiang-jie, LIU Zheng-yang, LIU Zhan-jun. A Review on Catalytic Preparation of Mesophase Pitch. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60862-0
Citation: MA Zi-hui, YANG Tao, SONG Yan, CHEN Wen-sheng, DUAN Chun-feng, SONG Huai-he, TIAN Xiao-dong, GONG Xiang-jie, LIU Zheng-yang, LIU Zhan-jun. A Review on Catalytic Preparation of Mesophase Pitch. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60862-0

催化法制备中间相沥青的研究进展

doi: 10.1016/S1872-5805(24)60862-0
基金项目: 国家自然科学基金项目(52072383,U21A2061,22209197);山西省自然科学基金项目(202203021211002, 202203021222399);中国科学院山西煤炭化学研究所创新基金资助项目(SCJC-XCL-2022-08)
详细信息
    通讯作者:

    宋 燕,研究员. E-mail:yansong1026@126.com

    宋怀河,教授. E-mail:songhh@mail.buct.edu.cn

A Review on Catalytic Preparation of Mesophase Pitch

Funds: The financial support for this work is provided by National Natural Science Foundation of China (52072383, U21A2061, 22209197), Natural Science Foundation of Shanxi Province (202203021211002, 202203021222399) and ICC CAS (SCJC-XCL-2022-08)
More Information
  • 摘要: 中间相沥青由于其高纯度和取向性,是高性能碳材料的优质前驱体。然而,高性能中间相沥青的制备仍面临着巨大挑战。低温催化缩聚方法更有利于合成中间相沥青,避免了其他热缩聚方法的高温自由基反应。此外,该反应条件温和且易于控制。它可以显著提高中间相沥青的产率,容易将环烷基特性引入分子中,因此,催化缩聚是合成高可纺丝性中间相沥青的最适制备方法。本文对制备不同中间相沥青的原料预处理的选择进行了概要,并阐述了近年来不同催化体系的反应机理和相关研究进展。最后,总结并展望了如何利用催化剂-促进剂体系制备高质量的中间相沥青,有望为今后高质量沥青分子的设计提供独特的理念和可靠的理论指导。
  • Figure  1.  (left) schematic diagram of traditional explanation for the formation and development of carbonaceous mesophase; (right) “spider web” model of mesophase molecules

    Figure  2.  Schematic diagram of raw material characteristics for preparing high-quality mesophase pitch

    Figure  3.  Typical process of AlCl3 catalytic modification method

    Figure  4.  Schematic diagram of the mechanism for the preparation of naphthalene pitch by AlCl3 catalytic polymerization.[4] Copyright 2000, Carbon

    Figure  5.  Optical texture characteristic map of anthracene-based pitch prepared by different Lewis-acids.[62] Copyright 1976, Carbon (a) AlCl3 (b) FeCl3 (c) MoCl5 (d) AlCl3+CuCl2

    Figure  6.  Typical process of HF/BF3 catalytic modification method

    Figure  7.  Synthetic pitch mesophase mesogen unit.[80] Copyright 1991, Carbon

    Figure  8.  Schematic diagram of the mechanism for the preparation of naphthalene pitch by HF/BF3 catalytic polymerization. [4] Copyright 2000, Carbon

    Figure  9.  Polarized light microstructures of HF/BF3 catalyzed pitch coking with different raw materials under different pressures.[81] Copyright 1988, Carbon (a) naphthalene, anthracene, phenanthrene, (b) pyrene, acenaphthylene, acenaphthylene, heat up from room temperature at 10 °C/min to 550 °C for 2 h

    Figure  10.  Molecular structural formula and molecular weight of different naphthalene core unit oligomers prepared over HF/BF3

    Figure  11.  Schematic diagram of the reaction mechanism in the activation and polymerization of naphthalene polymerization

    Figure  12.  Schematic diagram of the solid super acid centers

    Figure  13.  Molecular structure and molecular weight of different naphthalene oligomers prepared by SO42−/ZrO2

    Figure  14.  Schematic diagram of the reaction mechanism of SO42−/ZrO2 catalytic polymerization of naphthalene

    Figure  15.  Schematic diagram of the reaction mechanism of the alkali metal K-catalyzed process.[62] Copyright, 1976 Carbon

    Figure  16.  Schematic diagram of the complexation and initiation process of 1-decene oligomerization catalyzed by AlCl3-ethanol system

    Table  1.   Hydrogen in BS and BI-PS fractions of HF/BF3-catalyzed synthesis of naphthalene pitch

    SampleHydrogen distribution (%)faσalNaNc
    $\scriptstyle {\rm{H} }_{\rm ar}^{\rm O}$HαHβHγ
    NP 50.229.5191.30.80.225.000
    SMNPBS80.67.97.57.50.950.053.420
    BI-PS87.011.26.13.70.940.041.390
    TMNP-H4-2BS86.76.24.62.50.960.031.910
    BI-PS87.48.32.71.60.970.041.340
    TMNP-H8-2BS77.913.36.62.20.930.083.470.02
     BI-PS88.46.83.31.50.970.041.020
    DMP-NA-1BS50.736.012.70.60.820.266.171.31
    BI-PS66.424.77.91.00.900.154.571.28
    DMP-NA-2BS59.124.214.62.10.870.166.491.27
    BI-PS65.422.810.11.70.890.144.481.23
    DMP-NA-3BS65.622.79.62.10.890.144.380.68
     BI-PS71.615.08.84.60.920.097.930.95
    Note:fa: Carbon aromaticity, σal: Degree of aliphatic substitution of aromatic rings, Na: Number of carbon atoms per structural unit of aliphatic and naphthenic, Nc: Number of cycloalkanes per structural unit, NP: Isotropic pitch, SMNP: Indirect one-step pitch, TMNP: Indirect two-step pitch, DMP: Direct process pitch.
    下载: 导出CSV

    Table  2.   Properties of naphthalene and methylnaphthalene-based mesophase pitches catalyzed by HF/BF3. [80] Copyright 1991, Carbon

    SamplePreparation ConditionSoft Point/°CAC vol/%HSHT-BSBI-PSPI(QI)H/C
    NA260 °C, 4h2251002431144(30)0.52
    1MNA260 °C, 4h197702057914(7)0.70
    2MNA260 °C, 4h2058018541018(8)0.68
    mMNA260 °C, 4h2051008491330(26)0.69
    Note:NA: Naphthalene;1MNA: 1-Methylnaphthalene;2MNA: 2-Methylnaphthalene;mMNA: Mixed Methylnaphthalene
    下载: 导出CSV

    Table  3.   HF/BF3 catalytic preparation of pitch conditions from naphthalene, anthracene, phenanthrene, pyrene, acenaphthene, and acenaphthylene.[81] Copyright 1988, Carbon

    Raw materialMaterial /molHF/molBF3/molTemperature/°CPressure/MPaHeat treatment/hYield/%
    Naphthalene1053.55.3800.4~0.5790
    Anthracene0.530.25900.483100
    Phenanthrene0.530.25800.283
    Pyrene0.530.25400.08352
    Acenaphthene0.530.25400.2387
    Acenaphthylene0.530.25600.25389
    下载: 导出CSV

    Table  4.   The main preparation methods of mesophase pitch and related information

    MethodsRaw materialsMain processesPros and Cons
    Heat Polycondensation[101]Petroleum asphalt with certain number of cycloalkyl and alkyl groups, low ash content and low heteroatomsStir the raw materials at high temperature and remove light components by inert gas to. Then, thermally polycondensation at low temperature to complete the mesophase transformationPros: high aromaticity, low degree of condensation and certain number of cycloalkyl and alkyl groups
    Cons: high softening point, difficult to spin
    Neomesophase[101]Highly aromatic petroleum asphalt, coal tar pitch and other heavy petroleum oilsRaw material pretreatment and then separation of important fractions from raw pitch for further heat treatmentPros: less polycondensation time, high mesophase content, low QI contents
    Cons: complex solvent separation process
    dormant mesophase[56]Isotropic petroleum pitchHydrotreatment of the heat condensed isotropic pitch to anisotropic. Then, heat treatment to remove light components in reduced pressurePros: high aromaticity, low softening point
    Cons: complex hydrogenation process , high QI contents
    Pre-mesophase[39]Pitches with certain average molecular size and high aromaticity, such as coal tar pitch, tetralin, etc.Hydrotreatment of the raw materials. Then thermal polycondensation at rapid heating to form mesophase pitchPros: good fluidity, high spinnability, simple hydrogenation process
    Cons: highly raw material standards
    Catalytic polycondensationL-acid[18]Petroleum heavy oil, naphthalene, anthracene and other aromatic compoundsCatalytical modification of the raw materials. Then, further thermally polycondensation to form mesophase pitch after removal of the catalystsPros: high catalytic activity, good low-temperature fluidity, low softening point
    Cons: difficult in the removal of the catalyst
    B-acid[74]Petroleum heavy oil, naphthalene, anthracene and other aromaticsDirectly heat treatment of the raw materials in the presence of the catalysts under pressure. Then, remove the catalyst and light components at fixed temperature to obtain mesophase pitchPros: simple process, high yield, good spinnability, avoid catalyst residue
    Cons: highly corrosive of HF and high safety
    protection requirements
    Solid superacid[87]Petroleum heavy oil, naphthalene, anthracene and other aromaticsRaw materials Catalytical modification of the raw materials. Then, further thermally polycondensation to form mesophase pitch after removal of the catalystsPros: simple catalyst separation, low softening point, good low-temperature fluidity
    Cons: catalyst deactivation and crystallization at high temperatures, causing side reactions
    下载: 导出CSV
  • [1] M. G. Huson. 3-High-performance pitch-based carbon fibers, in: G. Bhat (Ed.), Structure and properties of high-Performance fibers[M]. Oxford: Woodhead Publishing, 2017, pp. 31-78.
    [2] G. Yuan, Z. Xue, Z. Cui, et al. Constructing the bridge from isotropic to anisotropic pitches for preparing pitch-based carbon fibers with tunable structures and properties[J]. ACS Omega,2020,5(34):21948-21960. doi: 10.1021/acsomega.0c03226
    [3] E. Frank, L. M. Steudle, D. Ingildeev, et al. Carbon fibers: precursor systems, processing, structure, and properties[J]. Angewandte Chemie,2014,53(21):5262-5298. doi: 10.1002/anie.201306129
    [4] I. Mochida, Y. Korai, C.-H. Ku, et al. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon,2000,38(2):305-328. doi: 10.1016/S0008-6223(99)00176-1
    [5] M. Minus, S. Kumar. The processing, properties, and structure of carbon fibers[J]. JOM,2005,57(2):52-58. doi: 10.1007/s11837-005-0217-8
    [6] F. G. Emmerich. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers[J]. Carbon,2014,79:274-293. doi: 10.1016/j.carbon.2014.07.068
    [7] H. Marsh, J. M. Foster, G. Hermon et al. Carbonization and liquid-crystal (mesophase) development. Part 2. Co-carbonization of aromatic and organic dye compounds, and influence of inerts[J]. Fuel,1973,52(4):234-242. doi: 10.1016/0016-2361(73)90051-3
    [8] G. Bhatia, E. Fitzer, D. Kompalik. Mesophase formation in defined mixtures of coal tar pitch fractions[J]. Carbon,1986,24(4):489-494. doi: 10.1016/0008-6223(86)90273-3
    [9] M. Li, Y. Zhang, S. Yu, et al. Effects of in-process hydrogenation on mesophase development during the thermal condensation of petroleum aromatic-rich fraction[J]. Energy & Fuels,2018,32(4):5659-5663.
    [10] S.-M. Oh, S. H. Yoon, G. D. Lee, et al. Effects of pressurized pretreatment on the preparation of mesophase pitch[J]. Carbon,1991,29(7):1009-1014. doi: 10.1016/0008-6223(91)90180-Q
    [11] S. Lee, Y. Eom, B.-J. Kim, et al. The thermotropic liquid crystalline behavior of mesophase pitches with different chemical structures[J]. Carbon,2015,81:694-701. doi: 10.1016/j.carbon.2014.10.007
    [12] J. J. McHugh, D. D. Edie. The orientation of mesophase pitch during fully developed channel flow[J]. Carbon,1996,34(11):1315-1322. doi: 10.1016/S0008-6223(96)00077-2
    [13] J. Brooks, G. Taylor. The formation of graphitizing carbons from the liquid phase[J]. Carbon,1965,3(2):185-193. doi: 10.1016/0008-6223(65)90047-3
    [14] S. Ōtani. On the carbon fiber from the molten pyrolysis products[J]. Carbon,1965,3(1):31-38. doi: 10.1016/0008-6223(65)90024-2
    [15] S. Ōtani, K. Yamada, T. Koitabashi, et al. On the raw materials of MP carbon fiber[J]. Carbon,1966,4(3):425-432. doi: 10.1016/0008-6223(66)90055-8
    [16] J. R. Boero, J. Wargon. Study of the AlCl3 catalytic activity on aromatic hydrocarbons—II: mesophase formation[J]. Carbon,1981,19(5):341-346. doi: 10.1016/0008-6223(81)90057-9
    [17] Y. Korai, S.-H. Yoon, H. Oka, et al. The properties of co-oligomerized mesophase pitch from methylnaphthalene and naphthalene catalyzed by HF/BF3[J]. Carbon,,1998,36(4):369-375. doi: 10.1016/S0008-6223(97)00181-4
    [18] I. Mochida, Y. Sone, Y. Korai. Preparation and properties of carbonaceous mesophase-II highly soluble mesophase from ethylene tar modified using aluminum chloride as a catalyst[J]. Carbon,1985,23(2):175-178. doi: 10.1016/0008-6223(85)90009-0
    [19] S.-H. Yoon, Y. Korai, I. Mochida. Assessment and optimization of the stabilization process of mesophase pitch fibers by thermal analyses[J]. Carbon,1994,32(2):281-287. doi: 10.1016/0008-6223(94)90191-0
    [20] M. Duan, Y. Tian, S. Li. The catalytic role of aluminium trichloride in the polymerization and carbonization of coal tar[J]. New Carbon Materials,2016,31(1):62-67. doi: 10.1016/S1872-5805(16)60005-7
    [21] I. Mochida, K. Shimizu, Y. Korai, et al. Preparation of mesophase pitch from aromatic hydrocarbons by the aid of HF/BF3[J]. Carbon,1990,28(2-3):311-319. doi: 10.1016/0008-6223(90)90005-J
    [22] M. Qi, S. Huang, et al. Hydrogenation behaviors and structural variations of subfraction of coal tar pitch and preparation of mesophases with well-developed optical textures, Journal of Analytical and Applied Pyrolysis, 2024, 177: 106377.
    [23] A. Sakanishi, Y. Korai, I. Mochida, et al. Comparative study of isotropic and mesophase pitches derived from C9 alkylbenzenes[J]. Carbon,1992,30(3):459-466. doi: 10.1016/0008-6223(92)90044-W
    [24] H. Song, L. Liu, B. Zhang. Structural features and formation mechanism of soluble fractions of mesophase pitch derived from 1, 2, 4, 5-tetramethylbenzene methylene-bridged oligomer[J]. Fuel,1996,75(11):1331-1338. doi: 10.1016/0016-2361(95)00311-8
    [25] I. Mochida, L. Ling, Y. Korai. Some factors for the high performances of mesophase pitch based carbon fibre[J]. Journal of materials science,1994,29:3050-3056. doi: 10.1007/BF01117619
    [26] S. Kundu, A. A. Ogale. Rheostructural studies on a synthetic mesophase pitch during transient shear flow[J]. Carbon,2006,44(11):2224-2235. doi: 10.1016/j.carbon.2006.02.041
    [27] V. Gargiulo, B. Apicella, F. Stanzione et al. Structural characterization of large polycyclic aromatic hydrocarbons. Part 2: solvent-separated fractions of coal tar pitch and naphthalene-derived pitch[J]. Energy & Fuels,2016,30(4):2574-2583.
    [28] H. Shimanoe, T. Mashio, K. Nakabayashi et al. Manufacturing spinnable mesophase pitch using direct coal extracted fraction and its derived mesophase pitch based carbon fiber[J]. Carbon,2020,158:922-929. doi: 10.1016/j.carbon.2019.11.082
    [29] F. Fanjul, M. Granda, R. Santamarı́a, et al. On the chemistry of the oxidative stabilization and carbonization of carbonaceous mesophase[J]. Fuel,2002,81(16):2061-2070. doi: 10.1016/S0016-2361(02)00189-8
    [30] Y. Korai, I. Mochida. Preparation and properties of carbonaceous mesophase-i soluble mesophase produced from A240 and coal tar pitch[J]. Carbon,1985,23(1):97-103. doi: 10.1016/0008-6223(85)90203-9
    [31] Y. Korai, S. Ishida, F. Watanabe, et al. Preparation of carbon fiber from isotropic pitch containing mesophase spheres[J]. Carbon,1997,35(12):1733-1737. doi: 10.1016/S0008-6223(97)00128-0
    [32] Y. Yamada, S. Matsumoto, K. Fukuda, et al. Optically anisotropic texture in tetrhydroqulnoline soluble matter of carbomceous mesophase[J]. Tanso,1981,107:144-146.
    [33] M. Li, D. Liu, R. Lv, et al. Preparation of the mesophase pitch by hydrocracking tail oil from a naphthenic vacuum residue[J]. Energy & Fuels,2015,29(7):4193-4200.
    [34] D. Liu, M. Li, F. Qu, et al. Investigation on preparation of mesophase pitch by the cocarbonization of naphthenic pitch and polystyrene[J]. Energy & Fuels,2016,30(3):2066-2075.
    [35] R. Yu, D. Liu, B. Lou, et al. The effect of solvent extraction on petroleum pitch compositions and their pyrolysis behaviors[J]. Fuel,2019,247:97-107. doi: 10.1016/j.fuel.2019.03.041
    [36] M. Jiang, N. Sun, R. Ali Soomro et al. The recent progress of pitch-based carbon anodes in sodium-ion batteries[J]. Journal of Energy Chemistry,2021,55:34-47. doi: 10.1016/j.jechem.2020.07.002
    [37] M. Qi, S. Huang, et al. Correlation of Mesophase Properties with Molecular Structures of Pitches from Different Sources, Energy Fuels, 2024, 38: 2855−2865.
    [38] Y. D. Park, Y. Korai, I. Mochida. Preparation of anisotropic mesophase pitch by carbonization under vacuum[J]. Journal of materials science,1986,21:424-428. doi: 10.1007/BF01145504
    [39] Y. D. Park, I. Mochida. A two-stage preparation of mesophase pitch from the vacuum residue of FCC decant oil[J]. Carbon,1989,27(6):925-929. doi: 10.1016/0008-6223(89)90043-2
    [40] D. Edie. The effect of processing on the structure and properties of carbon fibers[J]. Carbon,1998,36(4):345-362. doi: 10.1016/S0008-6223(97)00185-1
    [41] I. Mochida, K. Kudo, N. Fukuda, et al. Carbonization of pitches—IV: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst[J]. Carbon,1975,13(2):135-139. doi: 10.1016/0008-6223(75)90270-5
    [42] I. Mochida, Y. Q. Fei, Y. Korai, et al. Carbonization in the tube bomb leading to needle coke:III. Carbonization properties of several coal-tar pitches[J]. Carbon,1989,27(3):375-380. doi: 10.1016/0008-6223(89)90069-9
    [43] X. Zhang, Y. Meng, B. Fan, et al. Preparation of mesophase pitch from refined coal tar pitch using naphthalene-based mesophase pitch as nucleating agent[J]. Fuel,2019,243:390-397. doi: 10.1016/j.fuel.2019.01.114
    [44] Y. Cheng, L. Yang, T. Luo, et al. Preparation and characterization of mesophase pitch via co-carbonization of waste polyethylene/petroleum pitch[J]. Journal of Materials Science & Technology,2015,31(8):857-863.
    [45] J. Guo, Z. Li, B. Li, et al. Hydrogenation of coal tar pitch for improved mesophase pitch molecular orientation and carbon fiber processing, Journal of Analytical and Applied Pyrolysis, 2023, 174: 106146.
    [46] S. Gao, B. S. Villacorta, L. Ge, et al. Effect of rheological properties of mesophase pitch and coal mixtures on pore development in activated carbon discs with high compressive strength[J]. Fuel Processing Technology,2018,177:219-227. doi: 10.1016/j.fuproc.2018.04.032
    [47] C. J. Kim, S. K. Ryu, B. S. Rhee. Properties of coal tar pitch-based mesophase separated by high-temperature centrifugation[J]. Carbon,1993,31(5):833-838. doi: 10.1016/0008-6223(93)90023-4
    [48] M Li, Y Zhong, S Yu, et al. Preparation and characterization of petroleum-based mesophase pitch by thermal condensation with in-process hydrogenation, RSC Advances, 2018, 53(8): 30230-30238.
    [49] H Lee, J Choi, Y Oh, et al. Catalytic hydrogenation-assisted preparation of melt spinnable pitches from petroleum residue for making mesophase pitch based carbon fibers, Carbon Letters, 2017, 24(0): 28-35.
    [50] A. Vassallo, R. Codd. Pyrolysis and mesophase formation from sucrose[J]. Carbon,1988,26(4):553-558. doi: 10.1016/0008-6223(88)90155-8
    [51] C. Y. Wang, M. W. Li, Y. L. Wu, et al. Preparation and microstructure of hollow mesophase pitch-based carbon fibers[J]. Carbon,1998,36(12):1749-1754. doi: 10.1016/S0008-6223(98)00117-1
    [52] Takamine, Miyazaki. Raw materials for carbon materials and their surroundings[J]. TANSO,1983,115:186-195.
    [53] T. Miyake, K. Ueda, T. Nakamura. A new process (CHERRY-T process) to produce electrode binder pitch and property of the product pitch[J]. Carbon,1976,14(5):302.
    [54] K. Hutchenson, J. Roebers, M. Thies. Fractionation of petroleum pitch by supercritical fluid extraction[J]. Carbon,1991,29(2):215-223. doi: 10.1016/0008-6223(91)90072-Q
    [55] M. Shishido, S. Yamada, K. Arai, et al. Modification of the carbonization properties of coal-tar pitch by supercritical fluid extraction[J]. Fuel,1990,69(12):1490-1495. doi: 10.1016/0016-2361(90)90195-V
    [56] M. Wei, Z. Xu, S. Zhao. Preparation of mesophase pitch through supercritical fluid extraction of coal tar pitch, ACS Omega, 2024, 9: 6837−6844.
    [57] A. Yanagisawa, K. Ishihara, H. Yamamoto. Asymmetric protonations of enol derivatives[J]. Synlett,1997,Sup.I:411-420.
    [58] P. Kovacic, F. W. Koch. Coupling of naphthalene nuclei by lewis acid catalyst—oxidant1[J]. the Journal of organic chemistry,1965,30(9):3176-3181. doi: 10.1021/jo01020a075
    [59] C. Wang, X. Ruan, J. Zheng, et al. Highly soluble mesophase pitch from ethylene tar modified using AlCl3 as a catalyst[J]. Carbon,1992(01):24-30.1001-8948.
    [60] F. Wei, L. Liu, M. Wang, Q. Shuan. Mesophase formation for aluminium chloride-modified pitches from heavy fraction of light diesel fuel oil[J]. Acta Petrolei Sinica (Petroleum Processing),1989(04):1-8.1001-8719.
    [61] I. Mochida, Y. Sone, Y. D. Park, et al. Interaction among fractions in mesophase pitches derived from AlCl3-modified ethylene tar[J]. Journal of materials science,1985,20:3177-3183. doi: 10.1007/BF00545183
    [62] I. Mochida, E. I. Nakamura, K. Maeda, et al. Carbonization of aromatic hydrocarbons—IV: Reaction path of carbonization catalyzed by alkali metals[J]. Carbon,1976,14(2):123-129. doi: 10.1016/0008-6223(76)90121-4
    [63] J. D. Buckley, D. D. Edie. Carbon-carbon materials and composites[M]. William Andrew 1993.
    [64] B. Rand, S. P. Appleyard, M. F. Yardim. Design and control of structure of advanced carbon materials for enhanced performance[M]. Springer Science & Business Media 2012.
    [65] F. Liu, H. Wang, L. Xue, et al. Effect of microstructure on the mechanical properties of PAN-based carbon fibers during high-temperature graphitization[J]. Journal of Materials Science,2008,43(12):4316-4322. doi: 10.1007/s10853-008-2633-y
    [66] X. Huang. Fabrication and properties of carbon fibers[M]. Materials, 2009, 2: 2369 - 2403.
    [67] S. H. Yoon, Y. Korai, I. Mochia, et al. Axial nano-scale microstructures in graphitized fibers inherited from liquid crystal mesophase pitch[J]. Carbon,1996,34(1):83-88. doi: 10.1016/0008-6223(95)00138-7
    [68] V. Jiménez, P. Sánchez, A. Romero. 2-Materials for activated carbon fiber synthesis, in: J. Y. Chen (Ed. ), Activated Carbon Fiber and Textiles[M]. Woodhead Publishing, Oxford, 2017: pp. 21-38.
    [69] M Duan, Y Tian, S Li. The catalytic role of aluminium trichloride in the polymerization and carbonization of coal tar, New Carbon Materials, 2016, 31(1): 62-67.
    [70] Z. Xue, Z. Jin, F. Yan, et al. Preparation of mesophase pitch and its large-diameter carbon fibers[J]. Carbon Techniques,2019,38(02):6-11.
    [71] X. Li, Z. Ma, H. Song, et al. The preparation of soluble mesophase pitch with low softening point[J]. Carbon Techniques,2014,33(2):1-4+58.
    [72] A. L. Fernández, M. Granda, J. Bermejo, et al. Catalytic polymerization of anthracene oil with aluminium trichloride[J]. Carbon,1999,37(8):1247-1255. doi: 10.1016/S0008-6223(98)00321-2
    [73] H. Jie, Z. Hongxia. Thermodynamic study on the synthesis of coal pitch-based mesophase by catalytic polycondensation[J]. Chemical engineering transactions,2017,59:1015-1020.
    [74] W. C. Lamie, D. A. Bruce, W. P. Hoffman, et al. Kinetics of the catalytic polymerization of pyrene with AlCl3[J]. Carbon,2018,134:1-8. doi: 10.1016/j.carbon.2018.03.073
    [75] B. Zhang, H. Song, L. Cao, et al. Effect of different Lewis acids on the transformation of mesophase pitches[J]. CARBON TECHNIQUES,2013,32(04):18-21+30.
    [76] F. Li, Z. Shen, H. Liu. A method for preparing spinning-grade synthetic mesophase asphalt[P]. 2019, CN, 201910901067.5, CN 110628449 A
    [77] B. Zhang, H. Song, X. Chen, et al. In situ mesophase transformation by zirconium chloride in fabrication of carbon/carbon composites[J]. Materials Science and Engineering, 2012, A 555: 71-76.
    [78] X. Zhao, M. G. Lu, C. Song. Immobilization of aluminum chloride on MCM-41 as a new catalyst system for liquid-phase isopropylation of naphthalene[J]. Journal of Molecular Catalysis A, 2003, Chemical 191(1): 67-74.
    [79] B. Liu, H. Zhao, X. Li, et al. De-ashing of naphthalene-based mesophase pitch synthesized by the AlCl3-catalyzed method[J]. New Carbon Materials,2016,31(04):455-458.
    [80] Y. Korai, M. Nakamura, I. Mochida, et al. Mesophase pitches prepared from methylnaphthalene by the aid of HF/BF3[J]. Carbon,1991,29(4-5):561-567. doi: 10.1016/0008-6223(91)90121-X
    [81] I. Mochida, K. Shimizu, Y. Korai, et al. Structure and carbonization properties of pitches produced catalytically from aromatic hydrocarbons with HF/BF3[J]. Carbon,1988,26(6):843-852. doi: 10.1016/0008-6223(88)90108-X
    [82] I. Mochida, K. Shimizu, Y. Korai, et al. Mesophase pitch catalytically prepared from anthracene with HF/BF3[J]. Carbon,1992,30(1):55-61. doi: 10.1016/0008-6223(92)90106-7
    [83] I. Mochida, Recent Progresses of Mesophase Pitch. A Review at a Receipt of 1993 Charles E. Pettinos Award[J]. American Carbon Society, TANSO,1994,163:150-162.
    [84] C. Lu, L. Ling, W. Lu, et al. The reaction properties of naphthalenc ctalyzed and the structure of the oligomer and mesophase pitch[J]. New Carbon Materials,1999,03:19-25.
    [85] P. Y. Yang, H. Y. Chen, S. P. Ju, et al. Catalytic polymerization of naphthalene by HF/BF3 super acid: an ab initio density functional theory study[J]. Physical Chemistry Chemical Physics,2018,20(36):23311-23319. doi: 10.1039/C8CP02777C
    [86] I. Mochida, Y. Korai, K. Shimizu, et al. Preparation, structure and application of mesophase pitches prepared from aromatic hydrocarbons using HF/BF3 as catalysts[J]. Tanso,1992,155:370-378.
    [87] X. Fan, Q. Ren, H. Shen, et al. Mechanistic studies of HF/BF3-catalyzed anthracene polymerization to prepare mesophase pitch[J], Journal of Molecular Modeling, 2024, 30: 25.
    [88] J. Li, B. Lou, L. Chai, et al. Influence of boron trifluoride complex addition on structure and composition of mesophase pitch from FCC decant oil via two-stage thermotreatment, Fuel, 2022, 325: 124801.
    [89] L. Liu, S. Huaihe, B. Zhang. Preparation method of mesophase asphalt[P]. 1998, CN, CN 1185491A,
    [90] Y. Peng, C. Wang, X. Chen, et al. Study on pilot test of mesophase pitch[J]. CARBON TECHNIQUES,2021,40(01):50-51+56.
    [91] W. Zhang, W. Tian, S. Song, et al. Effect of Different Catalysts on Properties of Coal Tar Pitch Modified by Cinnamaldehyde[J], Journal of Spectroscopy, 2019, 6.
    [92] T. Yamaguchi, T. Jin, K. Tanabe. Structure of acid sites on sulfur-promoted iron oxide[J]. The Journal of Physical Chemistry,1986,90(14):3148-3152. doi: 10.1021/j100405a022
    [93] M. Hino, K. Arata. Reactions of butane and isobutane catalysed by titanium oxide treated with sulphate ion. Solid superacid catalyst, Journal of the Chemical Society[J]. Chemical Communications,1979,24:1148-1149.
    [94] H. Matsuhashi, M. Hino, K. Arata. Solid catalyst treated with anion:XIX. Synthesis of the solid superacid catalyst of tin oxide treated with sulfate ion[J]. Applied catalysis,1990,59(1):205-212. doi: 10.1016/S0166-9834(00)82198-3
    [95] J. R. Sohn, D. H. Seo. Preparation of new solid superacid catalyst, zirconium sulfate supported on γ-alumina and activity for acid catalysis[J]. Catalysis Today,2003,87(1):219-226.
    [96] Z. Hu, L. Ling, L. Liu, et al. Study on catalytical effect of solid for naphthalene oligomerization reaction[J]. CARBON TECHNIQUES,1995,03:5-9.
    [97] L. Liu , H. Zijun, L. Licheng, et al. A method for preparing mesophase bitumen with solid superacid[P]. 1999, CN, CN 1208065A,
    [98] Y. Fang, M. Jin, J. Yang, et al. Application of solid SO42−/ZrO2-SiO2 to naphthalene oligomerization[J]. Coal Conversion,2004,02:92-96.
    [99] Y. Fang, J. Yang, M. Jin, et al. Application of solid SO42−/ZrO2-Al2O3 to naphthalene oligomerization[J]. Coal Conversion,2004,04:91-95.
    [100] H. Shui, Z. Chen, et al. Kinetics of Shenhua coal liquefaction catalyzed by SO42− /ZrO2 solid acid, Fuel, 2010, 89: 67–72.
    [101] Z. Wang, H. Shui, Z. Lei, et al. Study of the preasphaltenes of coal liquefaction and its hydro-conversion kinetics catalyzed by SO42−/ZrO2, Fuel Processing Technology, 2011, 92: 1830–1835.
    [102] Z. J. Dong, X. K. Li, G. M. Yuan, et al. Fabrication of protective tantalum carbide coatings on carbon fibers using a molten salt method[J]. Applied Surface Science,2008,254(18):5936-5940. doi: 10.1016/j.apsusc.2008.03.158
    [103] Y. Cheng, T. Li, X. Hou, et al. Effects of AlCl3-NaCl content on the formation of mesocarbon microbeads[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1).
    [104] M. Braun, J. Kramer, K. Hüttinger, Kinetics of mesophase formation in a stirred tank reactor and properties of the products—VI. Catalysis by iron benzoate and naphthoate[J]. Carbon,1995,33(10):1359-1367. doi: 10.1016/0008-6223(95)00064-K
    [105] M. Bernhauer, M. Braun, K. J. Hüttinger. Kinetics of mesophase formation in a stirred tank reactor and properties of the products—V. Catalysis by ferrocene[J]. Carbon,1994,32(6):1073-1085. doi: 10.1016/0008-6223(94)90217-8
    [106] H. Song, X. Chen, X. Chen, et al. Influence of ferrocene addition on the morphology and structure of carbon from petroleum residue[J]. Carbon,2003,41(15):3037-3046. doi: 10.1016/S0008-6223(03)00430-5
    [107] S. Kumar, M. Srivastava. Catalyzing mesophase formation by transition metals[J]. Journal of Analytical and Applied Pyrolysis,2015,112:192-200. doi: 10.1016/j.jaap.2015.01.029
    [108] D. Kumar, M. Srivastava. Enhancement of mesophase formation in paraffinic rich clarified oil by using transition metal catalysts (Cr & Cu) [J]. Applied Petrochemical Research, 2018, 9.
    [109] P. Carreira, M. Martınez-Escandell, J. Jimenez-Mateos, et al. Chemistry of the co-pyrolysis of an aromatic petroleum residue with a pyridine–borane complex[J]. Carbon,2003,41(3):549-561. doi: 10.1016/S0008-6223(02)00365-2
    [110] T. Obara, T. Yokono, Y. Sanada, et al. Carbonization behaviour of pitch in the presence of inert material[J]. Fuel,1985,64(7):995-998. doi: 10.1016/0016-2361(85)90157-7
    [111] G. Liao, K. Shi, C. Ye, et al. Influence of resin on the formation and development of mesophase in fluid catalytic cracking (FCC) slurry oil[J]. Journal of Analytical and Applied Pyrolysis,2023,172:105997. doi: 10.1016/j.jaap.2023.105997
    [112] C. Wang. Theory and application of carbonaceous mesophases [M]. Science Press. 2015.
    [113] C. Duan, D. Zheng, J. Liu, et al. Research progress on the characterization of mesophase pitch[J]. New Carbon Materials,2018,33(03):193-202.
    [114] C. Duan, J. Liu, W. Xu, et al. Characterization of mesophase pitches made from three different raw materials[J]. Chemical Industry and Engineering Progress,2018,37(01):189-194.
    [115] Y. Wang, H. Gao, Y. Liang, et al. Study on 1-decene oligomerization catalyzed by aluminum chloride-water complex[J]. Davances in Fine Petochemicals,2017,18(03):51-54.
    [116] J. Wu, S. Xu, P. Mi, et al. Reaction kinetics of 1-decene oligomerization catalyzed by AlCl3-ethanol complex[J]. Petroleum Processing and Petrochemicals,2015,46(10):12-16.
    [117] I. Mochida, K. An, Y. Korai. Catalytic condensation of isoquinoline into pitch in higher yield in the presence of nitro solvents[J]. Carbon,1995,33(8):1079-1084. doi: 10.1016/0008-6223(95)00053-G
    [118] Z. Ma, T. Yang, Y. Song, et al. Preparation of nitrogen doped hyper-crosslinked polymer-based hard carbon for high performance Li+/Na+ battery anode[J]. Journal of colloid and interface science,2024,661:436-449. doi: 10.1016/j.jcis.2024.01.141
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  18
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-24
  • 录用日期:  2024-05-09
  • 修回日期:  2024-05-07
  • 网络出版日期:  2024-05-15

目录

    /

    返回文章
    返回