留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炭气凝胶在光热转换领域的研究进展

郎延亭 何宇 宋怀河 易黎明 邓海军 陈晓红

郎延亭, 何宇, 宋怀河, 易黎明, 邓海军, 陈晓红. 炭气凝胶在光热转换领域的研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60865-6
引用本文: 郎延亭, 何宇, 宋怀河, 易黎明, 邓海军, 陈晓红. 炭气凝胶在光热转换领域的研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60865-6
LANG Yan-ting, HE Yu, SONG Huai-he, YI Li-ming, DENG Hai-jun, CHEN Xiao-hong. Progress in the research of carbon aerogel in photothermal conversion. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60865-6
Citation: LANG Yan-ting, HE Yu, SONG Huai-he, YI Li-ming, DENG Hai-jun, CHEN Xiao-hong. Progress in the research of carbon aerogel in photothermal conversion. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60865-6

炭气凝胶在光热转换领域的研究进展

doi: 10.1016/S1872-5805(24)60865-6
详细信息
    作者简介:

    郎延亭,硕士研究生,E-mail:397299334@qq.com

    何宇:何 宇,硕士研究生,E-mail:905156883@qq.com

    通讯作者:

    陈晓红,教授. E-mail:chenxh@mail.buct.edu.cn

Progress in the research of carbon aerogel in photothermal conversion

More Information
  • 摘要: 光热转换是指将太阳能转换成热能,能够实现利用太阳能这种清洁可再生资源缓解能源匮乏。炭气凝胶材料具有高度发达的孔隙结构、优异的光捕获能力和高光热转换效率等优点,是当下光热转换领域研究热点。本文首先简单概述了不同光热材料的光热转换原理,然后从炭气凝胶种类入手分别讨论了石墨烯气凝胶、碳纳米管气凝胶、生物质基炭气凝胶和聚合物基炭气凝胶几种炭气凝胶作为光热材料的研究进展,最后介绍了炭气凝胶作为光热材料在太阳能水蒸发、热能储存、光热催化、光热治疗和光热除冰等方面的应用。
  • 图  1  光合作用以外的太阳能利用[1]

    Figure  1.  Solar energy use other than photosynthesis[1]

    图  2  光热效应的三种机理:a)等离子体共振效应;b)非辐射弛豫;c)分子热振动[4]

    Figure  2.  Three mechanisms of the photothermal effect : a)Plasmonic localized heating; b)Nonradiative relaxation; c)Thermal vibrations of molecules[4]

    图  3  炭气凝胶分类及其在光热领域的应用

    Figure  3.  Classification of carbon aerogels and their application in photothermal conversion field

    图  4  a)玉米秸秆/还原氧化石墨烯复合气凝胶制备流程[30];b)共轭微孔聚合物的制备及其碳纳米管气凝胶的微观结构[32];c)柚子皮基炭气凝胶的制备[34]

    Figure  4.  a) Preparation process of maize straw /reduced graphene oxide composite aerogel[30]; b) Preparation of conjugated microporous polymers and their microstructure in carbon nanotube aerogels[32]; c) Preparation of teak peel-based carbon aerogels[34]

    图  5  低密度炭气凝胶的制备及不同密度下炭气凝胶光反射示意图[40]

    Figure  5.  Preparation of low-density charcoal aerogel and schematic light reflection of carbon aerogels at different densities[40]

    图  6  a)三种太阳能水蒸发装置[48];b)三维太阳能界面水蒸发装置[49]

    Figure  6.  a)Three types of solar water evaporation devices[48]; b) Three-dimensional solar interface water evaporation device[49]

    图  7  整体式酚醛基炭气凝胶太阳能界面水蒸发装置[43]

    Figure  7.  Integral phenolic-based carbon aerogel solar interface water evaporation device[43]

    图  8  a) SGA光热催化机理示意图[57];b) β-TCP-CA平台治疗骨肉瘤和骨再生示意图[59]

    Figure  8.  a) Schematic diagram of SGA photothermal catalysis mechanism[57]; b) Schematic diagram of the β-TCP-CA platform for the treatment of osteosarcoma and bone regeneration[59]

  • [1] Lv J Q, Xie J F, Mohamed A G A, et al. Solar utilization beyond photosynthesis[J]. Nature Reviews Chemistry,2023,7(2):91-105.
    [2] Rana A, Cid Gomes L, Rodrigues J S, et al. A combined photobiological–photochemical route to C10 cycloalkane jet fuels from carbon dioxide via isoprene[J]. Green Chemistry,2022,24(24):9602-19. doi: 10.1039/D2GC03272D
    [3] Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science,1989,24(9):3221-7. doi: 10.1007/BF01139044
    [4] Cui X M, Ruan Q F, Zhuo X L, et al. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter[J]. Chemical Reviews,2023,123(11):6891-952. doi: 10.1021/acs.chemrev.3c00159
    [5] Holm V R A, Greve M M, Holst B. A theoretical investigation of the optical properties of metal nanoparticles in water for photo thermal conversion enhancement[J]. Energy Conversion and Management,2017,149:536-42. doi: 10.1016/j.enconman.2017.07.027
    [6] Ma X C, Sun H, Wang Y C, et al. Electronic and optical properties of strained noble metals: Implications for applications based on LSPR[J]. Nano Energy,2018,53:932-9. doi: 10.1016/j.nanoen.2018.09.042
    [7] Cao Y, Li S Z, Chen C, et al. Rattle-type Au@Cu2−xS hollow mesoporous nanocrystals with enhanced photothermal efficiency for intracellular oncogenic microRNA detection and chemo-photothermal therapy[J]. Biomaterials,2018,158:23-33. doi: 10.1016/j.biomaterials.2017.12.009
    [8] Liu X D, Chen B, Wang G G, et al. Controlled Growth of Hierarchical Bi2Se3/CdSe-Au Nanorods with Optimized Photothermal Conversion and Demonstrations in Photothermal Therapy[J]. Advanced Functional Materials,2021,31(43):2104424. doi: 10.1002/adfm.202104424
    [9] Xu Y Q, Wang K, Zhao S L, et al. Rough surface NiFe2O4@Au/Polydopamine with a magnetic field enhanced photothermal antibacterial effect[J]. Chemical Engineering Journal,2022,437:135282. doi: 10.1016/j.cej.2022.135282
    [10] Wen R L, Zhu S B, Wu M M, et al. Design and preparation of Ag modified expanded graphite based composite phase change materials with enhanced thermal conductivity and light-to-thermal properties[J]. Journal of Energy Storage,2021,41:102936. doi: 10.1016/j.est.2021.102936
    [11] Zang P Y, Du Y Q, Yu C H, et al. Photothermal-Actuated Thermoelectric Therapy by Harnessing Janus-Structured Ag–Ag2S Nanoparticles with Enhanced Antitumor Efficacy[J]. Chemistry of Materials,2023,35(18):7770-80. doi: 10.1021/acs.chemmater.3c01637
    [12] Geng X M, Zhang D D, Zheng Z M, et al. Integrated multifunctional device based on Bi2S3/Pd: Localized heat channeling for efficient photothermic vaporization and real-time health monitoring[J]. Nano Energy,2021,82:105700. doi: 10.1016/j.nanoen.2020.105700
    [13] Guo X Y, Liu J, Jiang L D, et al. Sulourea-coordinated Pd nanocubes for NIR-responsive photothermal/H2S therapy of cancer[J]. Journal of Nanobiotechnology,2021,19(1):321. doi: 10.1186/s12951-021-01042-9
    [14] Zhu X M, Wan H Y, Jia H L, et al. Porous Pt Nanoparticles with High Near-Infrared Photothermal Conversion Efficiencies for Photothermal Therapy[J]. Advanced Healthcare Materials,2016,5(24):3165-72. doi: 10.1002/adhm.201601058
    [15] Zhu D X, Wang L J, Liu Z M, et al. Effects of surface ligands on localized surface plasmon resonance and stabilization of Cu2−xSe nanocrystals[J]. Applied Surface Science,2020,509:145327. doi: 10.1016/j.apsusc.2020.145327
    [16] Li J, Chen G Y, Yan J H, et al. Solar-driven plasmonic tungsten oxides as catalyst enhancing ethanol dehydration for highly selective ethylene production[J]. Applied Catalysis B: Environmental,2020,264:118517. doi: 10.1016/j.apcatb.2019.118517
    [17] Zhan Y, Liu Y L, Zu H R, et al. Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy[J]. Nanoscale,2018,10(13):5997-6004. doi: 10.1039/C8NR00413G
    [18] Gärtner W W. Photothermal Effect in Semiconductors[J]. Physical Review,1961,122(2):419-24. doi: 10.1103/PhysRev.122.419
    [19] Nguyen N T, Yan T J, Wang L, et al. Plasmonic Titanium Nitride Facilitates Indium Oxide CO2 Photocatalysis[J]. Small,2020,16(49):2005754. doi: 10.1002/smll.202005754
    [20] Liu H L, Wu F, Liu X Y, et al. Multiscale Synergetic Bandgap/Structure Engineering in Semiconductor Nanofibrous Aerogels for Enhanced Solar Evaporation[J]. Nano Letters,2023,23(24):11907-15. doi: 10.1021/acs.nanolett.3c04059
    [21] He W, Zhou L, Wang M, et al. Structure development of carbon-based solar-driven water evaporation systems[J]. Science Bulletin,2021,66(14):1472-83. doi: 10.1016/j.scib.2021.02.014
    [22] Arunkumar T, Lim H W, Lee S J. A review on efficiently integrated passive distillation systems for active solar steam evaporation[J]. Renewable and Sustainable Energy Reviews,2022,155:111894. doi: 10.1016/j.rser.2021.111894
    [23] Wang X J, Li H C, Liu X P, et al. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion[J]. Biomaterials,2017,143:130-41. doi: 10.1016/j.biomaterials.2017.08.004
    [24] Zhao X T, Wang T Y, Jiang Y Y, et al. Robust and versatile polypyrrole supramolecular network packed photothermal aerogel for solar-powered desalination[J]. Desalination,2023,561:116674. doi: 10.1016/j.desal.2023.116674
    [25] Sun Y Z, Davis E W. Facile fabrication of polydopamine nanotubes for combined chemo-photothermal therapy[J]. Journal of Materials Chemistry B,2019,7(43):6828-39. doi: 10.1039/C9TB01338E
    [26] Cui L F, Zhang P P, Xiao Y K, et al. High Rate Production of Clean Water Based on the Combined Photo-Electro-Thermal Effect of Graphene Architecture [J]. Adv Mater, 2018, 30(22).
    [27] Ito Y, Tanabe Y, Han J H, et al. Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization[J]. Adv Mater,2015,27(29):4302-7. doi: 10.1002/adma.201501832
    [28] Yang Y, Zhao R Q, Zhang T F, et al. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification[J]. Acs Nano,2018,12(1):829-35. doi: 10.1021/acsnano.7b08196
    [29] Fu Y, Wang G, Ming X, et al. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation[J]. Carbon,2018,130:250-6. doi: 10.1016/j.carbon.2017.12.124
    [30] Kong Y, Dan H B, Kong W J, et al. Self-floating maize straw/graphene aerogel synthesis based on microbubble and ice crystal templates for efficient solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A,2020,8(46):24734-42. doi: 10.1039/D0TA07576K
    [31] Yin Z, Wang H M, Jian M Q, et al. Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation[J]. Acs Appl Mater Inter,2017,9(34):28596-603. doi: 10.1021/acsami.7b08619
    [32] Mu P, Zhang Z, Bai W, et al. Superwetting Monolithic Hollow-Carbon-Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation [J]. Adv Energy Mater, 2019, 9(1).
    [33] Zhan H J, Chen J F, Zhao H Y, et al. Biomimetic Difunctional Carbon-Nanotube-Based Aerogels for Efficient Steam Generation[J]. Acs Appl Nano Mater,2020,3(5):4690-8. doi: 10.1021/acsanm.0c00683
    [34] Geng Y, Sun W, Ying P J, et al. Bioinspired Fractal Design of Waste Biomass-Derived Solar-Thermal Materials for Highly Efficient Solar Evaporation [J]. Advanced Functional Materials, 2021, 31(3).
    [35] Duan H Y, Wang M X, Zhang Z W, et al. Biomass-derived photothermal carbon aerogel for efficient solar-driven seawater desalination [J]. J Environ Chem Eng, 2023, 11(2).
    [36] Li Z H, Wang M X, Chen L M, et al. Highly efficient carbonization of nanocellulose to biocarbon aerogels with ultrahigh light absorption efficiency and evaporation rate as bifunctional solar/electric driven steam generator for water purification [J]. Sustain Mater Techno, 2023, 36.
    [37] Xu X S, Chang Q, Xue C R, et al. A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation[J]. Journal of Materials Chemistry A,2022,10(21):11712-20. doi: 10.1039/D2TA02302D
    [38] Zhu R F, Wang D, Zhang J C, et al. Biomass eggplant-derived photothermal aerogels with Janus wettability for cost-effective seawater desalination [J]. Desalination, 2022, 527.
    [39] Liu Z X, Wu F, Lv T T, et al. Ti3C2TX/carbon aerogels derived from winter melon for high-efficiency photothermal conversion [J]. Desalination, 2024, 573.
    [40] Zhu J Y, Yang X, Fu Z B, et al. Facile fabrication of ultra-low density, high-surface-area, broadband antireflective carbon aerogels as ultra-black materials[J]. J Porous Mat,2016,23(5):1217-25. doi: 10.1007/s10934-016-0180-5
    [41] Wang H Q, Du A, Ji X J, et al. Enhanced Photothermal Conversion by Hot-Electron Effect in Ultrablack Carbon Aerogel for Solar Steam Generation[J]. Acs Appl Mater Inter,2019,11(45):42057-65. doi: 10.1021/acsami.9b12918
    [42] Yan H L, Cheng J Y, Li Z K, et al. Self-floating, monolithic, and aligned phenolic carbon aerogels from coal tar for solar-driven evaporation [J]. Fuel, 2024, 361.
    [43] Xie X Y, Yan H L, Lei Z P, et al. Facile Fabrication of Ultralow Density and Ultrahigh Solar Absorption Monolithic Phenolic Carbon Aerogel from Lignite for Solar Vapor Generation[J]. Acs Sustain Chem Eng,2024,12(3):1286-96. doi: 10.1021/acssuschemeng.3c06612
    [44] Oki T, Kanae S. Global Hydrological Cycles and World Water Resources[J]. Science,2006,313(5790):1068-72. doi: 10.1126/science.1128845
    [45] Politano A, Argurio P, Di Profio G, et al. Photothermal Membrane Distillation for Seawater Desalination[J]. Adv Mater,2017,29(2):1603504. doi: 10.1002/adma.201603504
    [46] González D, Amigo J, Suárez F. Membrane distillation: Perspectives for sustainable and improved desalination[J]. Renewable and Sustainable Energy Reviews,2017,80:238-59. doi: 10.1016/j.rser.2017.05.078
    [47] Long W, Koo J W, Yuan Z W, et al. Flow-through electrochemically assisted reverse-osmosis: A new process towards low-chemical desalination[J]. Water Research,2024,249:120982. doi: 10.1016/j.watres.2023.120982
    [48] Luo X, Shi J C, Zhao C Y, et al. The energy efficiency of interfacial solar desalination[J]. Applied Energy,2021,302:117581. doi: 10.1016/j.apenergy.2021.117581
    [49] Chen C J, Kuang Y D, Hu L B. Challenges and Opportunities for Solar Evaporation[J]. Joule,2019,3(3):683-718. doi: 10.1016/j.joule.2018.12.023
    [50] Zhou B, Han G J, Zhang Z, et al. Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion[J]. Carbon,2021,184:562-70. doi: 10.1016/j.carbon.2021.08.067
    [51] Yan J, Wu Q F, Wang J J, et al. Carbon nanofiber reinforced carbon aerogels for steam generation: Synergy of solar driven interface evaporation and side wall induced natural evaporation[J]. J Colloid Interf Sci,2023,641:1033-42. doi: 10.1016/j.jcis.2023.03.114
    [52] Hu Y W, Jiang Y J, Ni L Y, et al. An elastic MOF/graphene aerogel with high photothermal efficiency for rapid removal of crude oil [J]. J Hazard Mater, 2023, 443.
    [53] Liu C H, Xiao T J, Zhao J T, et al. Polymer engineering in phase change thermal storage materials[J]. Renewable and Sustainable Energy Reviews,2023,188:113814. doi: 10.1016/j.rser.2023.113814
    [54] Ji Z, Abdalkarim S Y H, Li H M, et al. Waste pomelo peels-derived ultralow density 3D-porous carbon aerogels: Mechanisms of "Soft-rigid" structural formation and solar-thermal energy storage conversion [J]. Sol Energ Mat Sol C, 2023, 259.
    [55] Wang T J, Wang C M, Huang Z, et al. Electro- and photo-thermal energy conversion investigation of polyethylene glycol infiltrated porous carbon aerogels [J]. Journal of Energy Storage, 2023, 68.
    [56] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature,1972,238(5358):37-8. doi: 10.1038/238037a0
    [57] Yao P C, Gong H, Wu Z Y, et al. Greener and higher conversion of esterification via interfacial photothermal catalysis[J]. Nature Sustainability,2022,5(4):348-56. doi: 10.1038/s41893-021-00841-0
    [58] Ge R L, Yan P N, Liu Y, et al. Recent Advances and Clinical Potential of Near Infrared Photothermal Conversion Materials for Photothermal Hepatocellular Carcinoma Therapy[J]. Advanced Functional Materials,2023,33(29):2301138. doi: 10.1002/adfm.202301138
    [59] Dong S J, Zhang Y N, Wang J Y, et al. A novel multifunctional carbon aerogel-coated platform for osteosarcoma therapy and enhanced bone regeneration[J]. Journal of Materials Chemistry B,2020,8(3):368-79. doi: 10.1039/C9TB02383F
    [60] Wu Y L, Dong L, Shu X, et al. Recent advancements in photothermal anti-icing/deicing materials [J]. Chemical Engineering Journal, 2023, 469.
    [61] Yu B, Sun Z R, Liu Y B, et al. Improving Anti-Icing and De-Icing Performances via Thermal-Regulation with Macroporous Xerogel[J]. Acs Appl Mater Inter,2021,13(31):37609-16. doi: 10.1021/acsami.1c08770
  • 加载中
图(8)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  50
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 录用日期:  2024-05-15
  • 修回日期:  2024-05-15
  • 网络出版日期:  2024-05-29

目录

    /

    返回文章
    返回