留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Formation of mesophase microbeads from bulk mesophase pitch induced by fullerene

CHEN Wen-sheng LIU Lan-tao WANG Zheng DUAN Chun-feng ZHANG Xing-wei MA Zhao-kun CHEN Xiao-hong SONG Huai-he

陈文胜, 刘澜涛, 王政, 段淳枫, 张型伟, 马兆昆, 陈晓红, 宋怀河. 富勒烯诱导块状中间相沥青形成中间相炭微球. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60866-8
引用本文: 陈文胜, 刘澜涛, 王政, 段淳枫, 张型伟, 马兆昆, 陈晓红, 宋怀河. 富勒烯诱导块状中间相沥青形成中间相炭微球. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60866-8
CHEN Wen-sheng, LIU Lan-tao, WANG Zheng, DUAN Chun-feng, ZHANG Xing-wei, MA Zhao-kun, CHEN Xiao-hong, SONG Huai-he. Formation of mesophase microbeads from bulk mesophase pitch induced by fullerene. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60866-8
Citation: CHEN Wen-sheng, LIU Lan-tao, WANG Zheng, DUAN Chun-feng, ZHANG Xing-wei, MA Zhao-kun, CHEN Xiao-hong, SONG Huai-he. Formation of mesophase microbeads from bulk mesophase pitch induced by fullerene. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60866-8

富勒烯诱导块状中间相沥青形成中间相炭微球

doi: 10.1016/S1872-5805(24)60866-8
基金项目: 国家自然科学基金(U21A2061)提供资金支持
详细信息
    通讯作者:

    宋怀河,教授. E-mail:songhh@mail.buct.edu.cn

  • 中图分类号: TQ127.1+1

Formation of mesophase microbeads from bulk mesophase pitch induced by fullerene

Funds: This work is supported by the National Natural Science Foundation of China (U21A2061)
More Information
    Author Bio:

    陈文胜和刘澜涛为共同第一作者

    Corresponding author: SONG Huai-he, Professor. E-mail: songhh@mail.buct.edu.cn
  • 摘要: 中间相沥青(Mesophase pitch, MP)形态的可控转变对于研究MP的形成机理和应用具有重要的现实意义。本研究将富勒烯(fullerene, C60)添加于萘基中间相沥青(Naphthalene-based mesophase pitch, NMP)中,并进行热处理,实现了中间相显微形态从融并体型到球状的可逆转变。通过偏光显微镜和扫描电子显微镜研究了C60添加量和热处理温度对中间相形态转变的影响。热重分析、傅立叶变换红外光谱、X 射线衍射和拉曼光谱对C60诱导NMP成球这一物理过程进行了印证。结果表明,在300~320 °C的热处理温度下,添加5%的C60可以使融并体型中间相转化为球形液晶态,中间相小球的尺寸随温度升高而增大。此外,我们建立了一个模型来解释C60在可逆转变过程中的独特诱导效应。本工作揭示了C60诱导下的中间相的形态转变可控转变行为,为后续中间相形态及应用研究提供了新思路。
  • Figure  1.  Experimental process of MP morphology transformation

    Figure  2.  Viscosity-temperature curve of NMP

    Figure  3.  Polarizing images of products at different C60 additions and heat treatment temperatures (a) NMP-0 320°C, (b) NMP-1 320°C, (c) NMP-5 320°C, (d) NMP-10 320°C, (e) NMP-5 300°C, (f) NMP-5 320°C (g), NMP-5 350°C and (h) NMP-5 380°C5 380 °C

    Figure  4.  SEM images of NMP-5 320 °C

    Figure  5.  Polarized-light images of products with different additive at 320 °C for holding time of 5 h (a) NMP, (b) N330 (5%), (c) Si (1%), (d) OPS (5%), (e) DPS (5%), (f) Graphene (1%)

    Figure  6.  TG curve and Raman spectra of C60

    Figure  7.  sample structure characterization. (a) TG/DTG curve, (b) FI-IR curve, (c) XRD pattern and (d) Raman spectrum

    Figure  8.  The model of the microscopic morphological transformation mechanism of NMP induced by C60

    Table  1.   Basic properties of NMP

    C/%H/%N/%S/%C/HTI/%PI/%SP/°CAsh (1.0×10−6)
    93.974.690.080.131.7962.2054.2027040
    Note: *TS: Toluene soluble component; PI: Pyridine insoluble component; SP: Softening point
    下载: 导出CSV

    Table  2.   Dimensional data of additives

    AdditionC60/nmN330/nmGrapheneSi/μmOPS/nmDPS/nm
    Size0.7120-50T: 0.8-1.2 nm
    D: 0.5-5 μm
    41-35-10
    Note: *T: Thickness; D: Diameter
    下载: 导出CSV

    Table  3.   TG/DTG data of naphthalene MP at different heating rates

    CodeTi/°CTf/°CTm/°CTML/%ML/%ΔT/°C
    NMP-026562048021.3221.32355
    NMP-127863047016.7616.93352
    NMP-529562546712.6213.28330
    NMP-103235804739.1810.20257
    Note: Ti: the initial thermogravimetric temperature; Tf: the final thermogravimetric temperature; Tm: the temperature at the maximum weight loss rate; TML: Total weight loss of sample; ML: Weight loss of NMP; ΔT = TfTi.
    下载: 导出CSV

    Table  4.   XRD and Raman data of samples

    Code2θ/(°)d002/nmLc/nmID/IGG Peak Width/(cm−1)
    NBMP-025.3940.35032.430.7886.23
    NBMP-125.5010.34893.180.8089.18
    NBMP-525.4590.34943.120.91118.24
    NBMP-1025.2810.35192.980.8371.54
    下载: 导出CSV
  • [1] Qi M, Huang S, Wu S, et al. Effective preparation of mesophase by segmented hydrogenation/thermal polycondensation of coal liquefied pitch[J]. Fuel,2022,324:124685. doi: 10.1016/j.fuel.2022.124685
    [2] Hu Y, Hurt R H. Thermodynamics of carbonaceous mesophase[J]. Carbon,1999,37(2):281-292. doi: 10.1016/S0008-6223(98)00176-6
    [3] Lewis I C. Chemistry and development of mesophase in pitch[J]. Journal de Chimie Physique,1984,81:751-758. doi: 10.1051/jcp/1984810751
    [4] Marsh H. Carbonization and liquid-crystal (mesophase) development: Part 1. The significance of the mesophase during carbonization of coking coals[J]. Fuel,1973,52(3):205-212. doi: 10.1016/0016-2361(73)90080-X
    [5] Yuan G, Jin Z, Zuo X, et al. Effect of carbonaceous precursors on the structure of mesophase pitches and their derived cokes[J]. Energy & fuels,2018,32(8):8329-8339.
    [6] Marsh H, Foster J, Hermon G, et al. Enhanced graphitisation of fluorene and carbazole-A study of mesophase formation[J]. Carbon,1973,11:425-426.
    [7] Gong X, Guo S, Ding Y, et al. Preparation of mesocarbon microbeads as anode material for lithium-ion battery by co-carbonization of FCC decant oil and conductive carbon black[J]. Fuel Processing Technology,2022,227:107110. doi: 10.1016/j.fuproc.2021.107110
    [8] Zhang X, Ma Z, Meng Y, et al. Effects of the addition of conductive graphene on the preparation of mesophase from refined coal tar pitch[J]. Journal of Analytical and Applied Pyrolysis,2019,140:274-280. doi: 10.1016/j.jaap.2019.04.004
    [9] Wang Y, Egashira M, Ishida S, et al. Microstructure of mesocarbon microbeads prepared from synthetic isotropic naphthalene pitch in the presence of carbon black[J]. Carbon,1998,37:307-314.
    [10] Menendez R, Fernandez J J, Bermejo J, et al. The role of carbon black/coal-tar pitch interactions in the early stage of carbonization[J]. Carbon,1996,34(7):895-902. doi: 10.1016/0008-6223(96)00044-9
    [11] Alain E, Begin D, Furdin G, et al. Effect of graphite or FeCl3-Graphite intercalation compounds on the mesophase development in coal tar pitch[J]. Carbon,1996,34(5):619-626. doi: 10.1016/0008-6223(96)00002-4
    [12] Lewis I C. Thermotropic mesophase pitch[J]. Carbon,1978,16(6):503. doi: 10.1016/0008-6223(78)90100-8
    [13] Yoon S H, Park Y D, Mochida I. Preparation of carbonaceous spheres from suspensions of pitch materials[J]. Carbon,1992,30(5):781-786. doi: 10.1016/0008-6223(92)90162-P
    [14] Kodama M, Fujirua T, Esumi K, et al. Preparation of meso-carbon microbeads with a narrow size distribution[J]. Carbon (New York, NY),1988,26(4):595-598.
    [15] Humphries R L, James P G, Luckhurst G R. A molecular field treatment of liquid crystalline mixtures. In: Symposia of the Faraday Society[J]. Royal Society of Chemistry,1971,5:107-118.
    [16] Humphries R L, James P G, Luckhurst G R. Molecular field treatment of nematic liquid crystals[J]. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics,1972,68:1031-1044. doi: 10.1039/f29726801031
    [17] Humphries R L, Luckhurst G R. A statistical theory of liquid crystalline mixtures: Phase separation[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences,1976,352(1668):41-56. doi: 10.1098/rspa.1976.0162
    [18] Shishido M, Inomata H, Arai K, et al. Application of liquid crystal theory to the estimation of mesophase pitch phase-transition behavior[J]. Carbon,1997,35(6):797-799. doi: 10.1016/S0008-6223(97)00016-X
    [19] Py X, Daguerre E. Pitch pyrolysis kinetics: Isothermal heat treatment experiments and model[J]. Fuel,2000,79:591-598. doi: 10.1016/S0016-2361(99)00193-3
    [20] Wang J, Tian L, Li G, et al. Construction of vitrinite molecular structures based on 13C NMR and FT-IR analysis: Fundamental insight into coal thermoplastic properties[J]. Fuel,2021,300:120981. doi: 10.1016/j.fuel.2021.120981
    [21] Fan Q, Yang Z, Lai S, et al. Synthesis of quinoline pitch and microstructures of its nitrogen-rich derived carbons[J]. Materials reports,2022,36(4):252-257.
    [22] Yang Y, Lin Q, Huang Y, et al. Efficient preparation of mesocarbon microbeads by pyrolysis of coal-tar pitch in the presence of rosin[J]. Journal of Analytical and Applied Pyrolysis,2011,91(2):310-315. doi: 10.1016/j.jaap.2011.03.005
    [23] Zhang X, Ning S, Ma Z, et al. The structural properties of chemically derived graphene nanosheets/mesophase pitch-based composite carbon fibers with high conductivities[J]. Carbon,2020,156:499-505. doi: 10.1016/j.carbon.2019.09.085
    [24] Zhu Y, Zhao C, Xu Y, et al. Preparation and characterization of coal pitch-based needle coke (Part I): The effects of aromatic index (fa) in refined coal pitch[J]. Energy & Fuels,2019,33(4):3456-3464.
    [25] Bagautdinov B, Ohara K, Babaev A A. High-energy X-Ray diffraction study of multiwalled carbon nanotubes fabricated by arc discharge plasma process[J]. Carbon,2022,191:75-83. doi: 10.1016/j.carbon.2022.01.038
    [26] Zhang X, Wu J, Jiang Z, et al. Tuning the carbon morphology by pyrolysis in AlCl3–NaCl molten salt from coal tar pitch[J]. Carbon,2024,217:118639. doi: 10.1016/j.carbon.2023.118639
    [27] He X, Liu X, Nie B, et al. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206:555-563. doi: 10.1016/j.fuel.2017.05.101
    [28] Chen C, Tang Y, Guo X. Comparison of structural characteristics of high-organic-sulfur and low-organic-sulfur coal of various ranks based on FT-IR and Raman spectroscopy[J]. Fuel,2022,310:122362. doi: 10.1016/j.fuel.2021.122362
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  26
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-10
  • 录用日期:  2024-05-30
  • 修回日期:  2024-05-29
  • 网络出版日期:  2024-06-04

目录

    /

    返回文章
    返回