留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Semi-quantitative analysis on the structural evolution of mesophase pitch-based carbon foams by Raman and FTIR spectroscopy

LIU Yue CHANG Sheng-kai SU Zhan-peng HUANG Zu-jian QIN Ji YANG Jian-xiao

刘越, 常胜凯, 苏展鹏, 黄祖健, 覃吉, 杨建校. Raman和FTIR光谱半定量分析中间相沥青基泡沫炭的结构演变行为. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60867-X
引用本文: 刘越, 常胜凯, 苏展鹏, 黄祖健, 覃吉, 杨建校. Raman和FTIR光谱半定量分析中间相沥青基泡沫炭的结构演变行为. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60867-X
LIU Yue, CHANG Sheng-kai, SU Zhan-peng, HUANG Zu-jian, QIN Ji, YANG Jian-xiao. Semi-quantitative analysis on the structural evolution of mesophase pitch-based carbon foams by Raman and FTIR spectroscopy. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60867-X
Citation: LIU Yue, CHANG Sheng-kai, SU Zhan-peng, HUANG Zu-jian, QIN Ji, YANG Jian-xiao. Semi-quantitative analysis on the structural evolution of mesophase pitch-based carbon foams by Raman and FTIR spectroscopy. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60867-X

Raman和FTIR光谱半定量分析中间相沥青基泡沫炭的结构演变行为

doi: 10.1016/S1872-5805(24)60867-X
详细信息
    通讯作者:

    杨建校,副教授. E-mail:yangjianxiao@hnu.edu.cn

  • 中图分类号: TQ127.1+1

Semi-quantitative analysis on the structural evolution of mesophase pitch-based carbon foams by Raman and FTIR spectroscopy

Funds: This work was supported by the National Natural Science Foundation of China (52372044, 22276191), Shccig-Qinling Program Found (SMYJY20230072) and CNPC Innovation Found (2022DQ02-0411)
More Information
  • 摘要: 以中间相沥青(MP)为原料,经过450 °C发泡、320 °C预氧化、1000 °C炭化和2800 °C石墨化工艺制备了石墨化泡沫炭(GFm)。同时研究并比较了MP前驱体经球磨或液相萃取预处理后制备的GFm在结构和性能上的差异,并对每个制备阶段样品的拉曼光谱和红外光谱进行了半定量计算分析。在此基础上,结合半定量光谱分析提供的泡沫炭结构和化学成分的详细信息及其显微观察特征,深入分析了制备过程中由MP到GFm的结构演变行为。结果表明:球磨可以使MP中芳烃组分分布趋于集中,有助于均匀发泡,从而获得孔径均匀、综合性能较优的GFm。液相萃取有助于去除MP中的轻组分,同时保留大的芳烃分子,在后处理过程中形成具有最大平均尺寸的碳质微晶平面,从而获得石墨化程度最高、开孔最少的GFm,并呈现出最佳的抗压性能(2.47 MPa)、最高的热导率(64.47 W/(m·K))和最低的电阻(13.02 μΩ·m)。因此,本文建立的半定量光谱分析与显微观察相结合的表征策略,为中间相沥青基泡沫炭的结构演变分析及其可控制备提供了可靠的理论知识。
  • Figure  1.  TG-DTG curves in N2 of MP

    Figure  2.  (a) FTIR spectra with (b, c) peak-fitting examples (d, e, f) TG-DTG-DSC curves in air of precursors and rheological curves of (g) MP, (h) BMP and (i) LMP

    Figure  3.  FTIR spectra of (a) Fm and (b) OFm, and (c) TG curves in air of Fm

    Figure  4.  (a) Raman spectra of precursors and (b) the peak-fitting example

    Figure  5.  (a) POM images of MP and (b) MP-Fm, and (c) diagram of planar molecule configuration

    Figure  6.  SEM images of (a) MP-Fm, (b) BMP-Fm and (c) LMP-Fm

    Figure  7.  Raman spectra collected from pore walls of (a) Fm and (c) OFm as well as ligaments of (b) Fm and (d) OFm

    Figure  8.  SEM images of (a) MP-CFm, (b) BMP-CFm and (c) LMP-CFm

    Figure  9.  Raman spectra collected from pore walls of (a) CFm and (c) GFm as well as ligaments of (b) CFm and (d) GFm

    Figure  10.  SEM images of (a) MP-GFm, (b) BMP-GFm and (c) LMP-GFm

    Figure  11.  Compressive stress-strain curves of GFm

    Table  1.   Element analysis and semi-quantitative FTIR calculation of precursors

    SamplesEA/%FTIR
    CHNSC/H${I_{{\rm{OS}}} }^{\rm{a} }$${I_{{\rm{ar}}} }^{\rm{b} }$${I_{{\rm{SC}}} }^{\rm{c} }$
    MP94.065.130.040.531.520.3090.2640.230
    BMP94.244.990.040.381.570.2680.2750.217
    LMP94.214.900.080.461.600.2630.3110.203
    Notes: a: the aromatic fusion index. b: the aromatic hydrocarbon index. c: the alkyl side chain index.
    下载: 导出CSV

    Table  2.   Element analysis and semi-quantitative FTIR calculation of Fm and OFm

    SamplesEAFTIR
    C/H${I_{{\rm{OS}}} }^{\rm{a} }$${I_{{\rm{ar}}} }^{\rm{b} }$${I_{{\rm{SC}}} }^{\rm{c} }$${I_{{\rm{O}}} }^{\rm{d} }$
    MP-Fm2.390.3880.7500.782
    BMP-Fm2.430.3550.8170.781
    LMP-Fm2.500.3310.8050.762
    MP-OFm2.570.4270.329
    BMP-OFm2.640.3900.318
    LMP-OFm2.700.3920.244
    Notes: a: the aromatic fusion index. b: the aromatic hydrocarbon index. c: the alkyl side chain index. d: the oxidation index.
    下载: 导出CSV

    Table  3.   Semi-quantitative Raman calculation of CFm

    SamplesWallLigament
    ID/IGIA/IGID/IGIA/IG
    MP-CFm2.850.672.840.72
    BMP-CFm3.120.712.520.61
    LMP-CFm2.860.722.670.64
    下载: 导出CSV

    Table  4.   Physical and mechanical properties of GFm

    SamplesThermal ConductivityResistivityCompression Performance
    λ/(W/(m·K))ρ/(μΩ·m)σ/(MPa)ɛmax/%
    MP-GFm54.7714.761.5456
    BMP-GFm58.7813.942.3460
    LMP-GFm64.4713.022.4767
    下载: 导出CSV
  • [1] Li S, Tian Y, Zhong Y, et al. Formation mechanism of carbon foams derived from mesophase pitch[J]. Carbon,2011,49(02):618-624. doi: 10.1016/j.carbon.2010.10.007
    [2] Klett J, Hardy R, Romine E, et al. High-thermal-conductivity, mesophase-pitch-derived carbon foams: Effect of precursor on structure and properties[J]. Carbon,2000,38(07):953-973. doi: 10.1016/S0008-6223(99)00190-6
    [3] Gallego N C, Klett J W. Carbon foams for thermal management[J]. Carbon,2003,41(07):1461-1466. doi: 10.1016/S0008-6223(03)00091-5
    [4] Inagaki M, Qiu J, Guo Q. Carbon foam: Preparation and application[J]. Carbon,2015,87:128-152. doi: 10.1016/j.carbon.2015.02.021
    [5] Liu H, Wu S, Tian N, et al. Carbon foams: 3D porous carbon materials holding immense potential[J]. Journal of Materials Chemistry A,2020,8:23699-23723. doi: 10.1039/D0TA08749A
    [6] Klett J W, McMillan A D, Gallego N C, et al. The role of structure on the thermal properties of graphitic foams[J]. Journal of Materials Science,2004,39:3659-3676. doi: 10.1023/B:JMSC.0000030719.80262.f8
    [7] Shen Z, Ge M, Chi W, et al. Preparation, structure and properties of mesophase pitch-based carbon foams[J]. New Carbon Materials,2006,21(03):193-201.
    [8] Lin Q, Feng Z, Li T, et al. The effect of pyrocarbon deposition on the microstructure of graphitic foam[J]. Carbon,2013,56:18-26. doi: 10.1016/j.carbon.2012.12.031
    [9] Chen C, Kennel E B, Stiller A H, et al. Carbon foam derived from various precursors[J]. Carbon,2006,44(8):1535-1543. doi: 10.1016/j.carbon.2005.12.021
    [10] Zhang R, Li Y. Structures and high temperature frictional behaviors of coal pitch-derived carbonaceous mesophases (CMs) ball milled for different durations[J]. Tribology Letters,2008,32:209-213. doi: 10.1007/s11249-008-9382-6
    [11] Guillen M D, Iglesias M J, Dominguez A, et al. Semi-quantitative FTIR analysis of a coal tar pitch and its extracts and residues in several organic solvents[J]. Energy & Fuels,1992,6(04):518-525.
    [12] Dauché F M, Bolaños G, Blasig A, et al. Control of mesophase pitch properties by supercritical fluid extraction[J]. Carbon,1998,36(07-08):953-961.
    [13] Zhu Y, Gao L, Zhao X, et al. Quantitative analysis of refined pitches by curve-fitting of fourier transform infrared spectroscopy spectrum[J]. Spectroscopy and Spectral Analysis,2019,39(3):765-771.
    [14] Dong S, Yang J, Chang S et al. An innovative and efficient method for the preparation of mesocarbon microbeads and their use in the electrodes of lithium ion batteries and electric double layer capacitors[J]. New Carbon Materials,2023,38(1):173-185. doi: 10.1016/S1872-5805(22)60606-1
    [15] Fitzer E, Rozploch F. Laser Raman spectroscopy for determination of the C-C bonding length in carbon[J]. Carbon,1988,26(4):594-595. doi: 10.1016/0008-6223(88)90162-5
    [16] Liu Y, Wang M, Yang J, et al. Oxygen-containing functional groups of activated carbon fibers as efficient oxygen transfer channels for H2S catalytic oxidation at room temperature[J]. Fuel,2024,368:131590. doi: 10.1016/j.fuel.2024.131590
    [17] Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials[J]. Carbon,1995,33(11):1561-1565. doi: 10.1016/0008-6223(95)00117-V
    [18] Zhang X, Fujiwara S, Fujii M. Measurements of thermal conductivity and electrical conductivity of a single carbon fiber[J]. International Journal of Thermophysics,2000,21:965-980. doi: 10.1023/A:1006674510648
    [19] Chen H, Yang J, Shuai Q, et al. In-situ doping B4C nanoparticles in PAN precursors for preparing high modulus PAN-based carbon fibers with boron catalytic graphitization[J]. Composites Science and Technology,2020,200:108455. doi: 10.1016/j.compscitech.2020.108455
    [20] Liao G, Shi K, Ye C, et al. Influence of two asphaltenes on the formation and development of mesophase in fluid catalytic cracking (FCC) slurry oil[J]. Energy,2024,293:130731. doi: 10.1016/j.energy.2024.130731
    [21] Peng Y, Yang J, Shi K et al. Effects of the degree of oxidation of pitch fibers on their stabilization and carbonization behaviors[J]. New Carbon Materials,2020,35(6):722-730. doi: 10.1016/S1872-5805(20)60515-7
    [22] Wang Y, Li M, Zhao Z et al. Preliminary exploration of the mechanism governing the cell structure variation of mesophase coal pitch/carbon black composite carbon foam[J]. Diamond and Related Materials,2023,136:110077. doi: 10.1016/j.diamond.2023.110077
    [23] Masato Kakihana, Minoru Osada. Raman spectroscopy as a characterization tool for carbon materials[J]. Carbon Alloys, Elsevier Science, 2003: 285-298.
    [24] Hao J, Cheng Y, Tan Y, et al. Ionothermal synthesis of fiber-reinforced carbon aerogel composites from fructose with high mechanical and thermal insulation properties[J]. Composites Part A: Applied Science and Manufacturing,2024,181:108135. doi: 10.1016/j.compositesa.2024.108135
    [25] Yu H, Li K, Lu J. Study on the mechanical properties of C/C composites reinforced by different types of carbon fibers[J]. Journal of Materials Research and Technology,2023,26:5696-5706. doi: 10.1016/j.jmrt.2023.08.242
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  23
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-03
  • 录用日期:  2024-06-04
  • 修回日期:  2024-06-03
  • 网络出版日期:  2024-06-06

目录

    /

    返回文章
    返回