留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simple synthesis of pitch-derived carbon anode for high-performance potassium-ion batteries

JIANG Ming-chi SUN Ning YU Jia-xu WANG Ti-zheng Razium Ali Somoro JIA Meng-qiu XU Bin

蒋明池, 孙宁, 俞嘉旭, 王体征, Razium Ali Somoro, 贾梦秋, 徐斌. 高性能钾离子电池沥青基碳负极材料. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60868-1
引用本文: 蒋明池, 孙宁, 俞嘉旭, 王体征, Razium Ali Somoro, 贾梦秋, 徐斌. 高性能钾离子电池沥青基碳负极材料. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60868-1
JIANG Ming-chi, SUN Ning, YU Jia-xu, WANG Ti-zheng, Razium Ali Somoro, JIA Meng-qiu, XU Bin. Simple synthesis of pitch-derived carbon anode for high-performance potassium-ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60868-1
Citation: JIANG Ming-chi, SUN Ning, YU Jia-xu, WANG Ti-zheng, Razium Ali Somoro, JIA Meng-qiu, XU Bin. Simple synthesis of pitch-derived carbon anode for high-performance potassium-ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60868-1

高性能钾离子电池沥青基碳负极材料

doi: 10.1016/S1872-5805(24)60868-1
基金项目: 国家自然科学基金,中央高校基本科研业务费
详细信息
    通讯作者:

    孙 宁,女,博士、副教授. E-mail:ningsun@mail.buct.edu.cn

    贾梦秋,女,博士、教 授. E-mail:jiamq@mail.buct.edu.cn

    徐 斌,男,博士、教 授. E-mail:xubin@mail.buct.edu.cn

Simple synthesis of pitch-derived carbon anode for high-performance potassium-ion batteries

Funds: This work was financially supported by the National Natural Science Foundation of China (52072021) and the Fundamental Research Funds for the Central Universities (buctrc202141)
More Information
  • 摘要: 钾离子电池(PIBs)在大规模能源储存方面展现出良好的应用前景,制备高性能负极材料对于钾离子电池的发展至关重要。得益于其结构的多样性,碳材料被认为是最有希望实现商业化应用的负极材料。然而,碳材料的结构及其电化学性能之间的构效关系仍不明确。本文通过在600-1400 °C的范围内调节碳化温度,制备了一系列结构不同的沥青基碳材料,其中,MTP700样品具有较高无序度和较大碳层间距,表现出329.4 mAh g−1的高可逆容量和72.81%的首次库伦效率,且在5 C大电流倍率下,储钾容量仍能保持144.2 mAh g−1。本文系统分析了碳材料结构和储钾性能随碳化温度的变化规律,揭示了碳材料微晶尺寸与低电位平台区容量以及缺陷、无序程度与斜线区容量的对应关系,有助于加深对碳负极材料储钾过程的理解,推动钾离子电池的快速发展。
  • Figure  1.  SEM images of MTP samples: (a, b) MTP600, (c, d) MTP700, (e, f) MTP800, (g, h) MTP1000, (i, j) MTP1200, (k, l) MTP1400

    Figure  2.  HRTEM and SAED images of MTP samples: (a) MTP600, (b) MTP700, (c) MTP800, (d) MTP1000, (e) MTP1200, (f) MTP1400

    Figure  3.  (a) TG and DTG curves, (b,c) XRD patterns and fitted (002) peaks; (d,e) Raman spectroscopy and fitted curves, and (f) the crystalline parameters of the MTP samples

    Figure  4.  The CV curves at a scan rate of 0.1 mV s−1 of MTP samples

    Figure  5.  GCDs at a current density of 0.1 C of MTP samples

    Figure  6.  The comparison of (a) cycle stability at a current density of 0.2 C, (b) rate capability at different current rates, (c) the GCD curves of the 15th cycle, (d) the sloping/plateau region capacity contributions of the discharge processes, and the corresponding relationship with the (e) ID/IG values, and (f) La values of the MTP samples

    Figure  7.  (a-d) The GITT curves of the 2nd cycle and the corresponding diffusion coefficient at (e) discharge and (f) charge processes of MTP samples; (g) the schematic illustration of the variations of structure and K-storage behavior of pitch-based carbon materials with carbonization temperature

    Table  1.   Structural properties and electrochemical performances of MTP

    Samplesd002/nmID/IGinitial charge/discharge cycleCapacity 5 C/mAh g−1
    Charge/mAh g−1ICE/%
    MTP6000.3542.84285.364.999.9
    MTP7000.3522.55329.472.8144.2
    MTP8000.3512.50309.268.0138.1
    MTP10000.3502.39262.766.9118.6
    MTP12000.3471.98261.662.8105.5
    MTP14000.3461.47253.260.492.0
    下载: 导出CSV
  • [1] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science,2011,334(6058):928-935. doi: 10.1126/science.1212741
    [2] Kubota K, Dahbi M, Hosaka T, et al. Towards K-ion and Na-ion batteries as "beyond Li-Ion"[J]. The Chemical Record,2018,18(4):459-479. doi: 10.1002/tcr.201700057
    [3] Pramudita J C, Sehrawat D, Goonetilleke D, et al. An initial review of the status of electrode materials for potassium-ion batteries[J]. Advanced Energy Materials,2017,7(24):1602911. doi: 10.1002/aenm.201602911
    [4] Hwang J-Y, Myung S-T, Sun Y-K. Recent progress in rechargeable potassium batteries[J]. Advanced Functional Materials,2018,28(43):1802938. doi: 10.1002/adfm.201802938
    [5] Jian Z, Luo W, Ji X. Carbon electrodes for K-ion batteries[J]. Journal of the American Chemical Society,2015,137(36):11566-11569. doi: 10.1021/jacs.5b06809
    [6] Luo W, Wan J, Ozdemir B, et al. Potassium ion batteries with graphitic materials[J]. Nano Letters,2015,15(11):7671-7677. doi: 10.1021/acs.nanolett.5b03667
    [7] Zhao J, Zou X, Zhu Y, et al. Electrochemical intercalation of potassium into graphite[J]. Advanced Functional Materials,2016,26(44):8103-8110. doi: 10.1002/adfm.201602248
    [8] Yu J, Jiang M, Zhang W, et al. Advancements and prospects of graphite anode for potassium‐ion batteries[J]. Small Methods,2023,7(11):2300708. doi: 10.1002/smtd.202300708
    [9] Wang D-K, Zhang J-P, Dong Y, et al. Progress on graphitic carbon materials for potassium- based energy storage[J]. New Carbon Materials,2021,36(3):435-448. doi: 10.1016/S1872-5805(21)60039-2
    [10] Ran F T, Yang X B, Shao L. Recent progress in carbon-based nanoarchitectures for advanced supercapacitors[J]. Advanced Composites and Hybrid Materials,2018,1(1):32-55. doi: 10.1007/s42114-017-0021-2
    [11] Adams R A, Varma A, Pol V G. Carbon anodes for nonaqueous alkali metal‐ion batteries and their thermal safety aspects[J]. Advanced Energy Materials,2019,9(35):1900550. doi: 10.1002/aenm.201900550
    [12] Cui R C, Xu B, Dong H J, et al. N/O dual-doped environment-friendly hard carbon as advanced anode for potassium-ion batteries[J]. Advanced Science,2020,7(5):1902547. doi: 10.1002/advs.201902547
    [13] Verma R, Singhbabu Y N, Didwal P N, et al. Biowaste orange peel‐derived mesoporous carbon as a cost‐effective anode material with ultra‐stable cyclability for potassium‐ion batteries[J]. Batteries & Supercaps,2020,3(10):1099-1111.
    [14] Alvin S, Chandra C, Kim J. Controlling intercalation sites of hard carbon for enhancing Na and K storage performance[J]. Chemical Engineering Journal,2021,411:128490. doi: 10.1016/j.cej.2021.128490
    [15] Zhu T, Mai B, Hu P, et al. Bagasse-derived hard carbon anode with an adsorption–intercalation mechanism for high-rate potassium storage[J]. ACS Applied Energy Materials,2023,6(4):2370-2377. doi: 10.1021/acsaem.2c03628
    [16] Tao L, Liu L, Chang R, et al. Structural and interface design of hierarchical porous carbon derived from soybeans as anode materials for potassium-ion batteries[J]. Journal of Power Sources,2020,463:228172. doi: 10.1016/j.jpowsour.2020.228172
    [17] Wang B, Yuan F, Wang J, et al. Multi-forks hierarchical porous amorphous carbon with N-Doping for high-performance potassium-ion batteries[J]. Electrochimica Acta,2020,354:136627. doi: 10.1016/j.electacta.2020.136627
    [18] Yin J, Jin J, Chen C, et al. Preferential pyrolysis construction of carbon anodes with 8400 h lifespan for high-energy-density K-ion batteries[J]. Angewandte Chemie International Edition,2023,62(17):e202301396. doi: 10.1002/anie.202301396
    [19] Zhu F, Cao W, Song W, et al. Biomass-derived carbon prepared through a quadruple-functional-salt approach for application in K-ion capacitors[J]. Chemical Engineering Journal,2022,449:137561. doi: 10.1016/j.cej.2022.137561
    [20] Yuan F, Zhang D, Li Z, et al. Unraveling the intercorrelation between micro/mesopores and K migration behavior in hard carbon[J]. Small,2022,18(12):2107113. doi: 10.1002/smll.202107113
    [21] Tan H, Zhou R, Zhang B. Understanding potassium ion storage mechanism in pitch-derived soft carbon and the consequence on cyclic stability[J]. Journal of Power Sources,2021,506:230179. doi: 10.1016/j.jpowsour.2021.230179
    [22] Liu Y, Lu Y X, Xu Y S, et al. Pitch-derived soft carbon as stable anode material for potassium ion batteries[J]. Advanced Materials,2020,32(17):2000505. doi: 10.1002/adma.202000505
    [23] Liu H, Du H, Zhao W, et al. Fast potassium migration in mesoporous carbon with ultrathin framework boosting superior rate performance for high-power potassium storage[J]. Energy Storage Materials,2021,40:490-498. doi: 10.1016/j.ensm.2021.05.037
    [24] Wu S, Song Y, Lu C, et al. High-rate soft carbon anode in potassium ion batteries: The role of chemical structures of pitches[J]. Carbon,2023,203:211-220. doi: 10.1016/j.carbon.2022.11.058
    [25] Wu S, Song Y, Lu C, et al. An adsorption-insertion mechanism of potassium in soft carbon[J]. Small,2021,18(4):2105275.
    [26] Jiang M, Sun N, Ali Soomro R, et al. The recent progress of pitch-based carbon anodes in sodium-ion batteries[J]. Journal of Energy Chemistry,2021,55:34-47. doi: 10.1016/j.jechem.2020.07.002
    [27] Ma X, Xiao N, Xiao J, et al. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries[J]. Carbon,2021,179:33-41. doi: 10.1016/j.carbon.2021.03.067
    [28] Sun N, Qiu J S, Xu B. Understanding of sodium storage mechanism in hard carbons: ongoing development under debate[J]. Advanced Energy Materials,2022,12(27):2200715. doi: 10.1002/aenm.202200715
    [29] Zhao R, Sun N, Xu B. Recent advances in heterostructured carbon materials as anodes for sodium-ion batteries[J]. Small Structures,2021,2(12):2100132. doi: 10.1002/sstr.202100132
    [30] Chang X Q, Sun N, Zhou H Y, et al. Soft carbon-coated bulk graphite for improved potassium ion storage[J]. Chinese Chemical Letters,2023,34(3):107312. doi: 10.1016/j.cclet.2022.03.035
    [31] Jiang M, Sun N, Li T, et al. Revealing the charge storage mechanism in porous carbon to achieve efficient K ion storage[J]. Small, 2024: 2401478.
    [32] Hou Z, Jiang M, Lei D, et al. Regulation of pseudographitic carbon domain to boost sodium energy storage[J]. Nano Research,2024,17(6):5188-5196. doi: 10.1007/s12274-024-6448-1
    [33] Zhang X, Hou Z, Jiang M, et al. Molecular engineering to regulate the pseudo-graphitic structure of hard carbon for superior sodium energy storage[J]. Small, 2024: 2311778.
    [34] Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials,2020,10(20):2000283. doi: 10.1002/aenm.202000283
    [35] Cançado L G, Takai K, Enoki T, et al. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy[J]. Applied Physics Letters,2006,88(16):163106. doi: 10.1063/1.2196057
    [36] Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon,2005,43(8):1731-1742. doi: 10.1016/j.carbon.2005.02.018
    [37] Zhang S, Sun N, Li X, et al. Closed pore engineering of activated carbon enabled by waste mask for superior sodium storage[J]. Energy Storage Materials,2024,66:103183. doi: 10.1016/j.ensm.2024.103183
    [38] Chen H, Sun N, Wang Y, et al. One stone two birds: pitch assisted microcrystalline regulation and defect engineering in coal-based carbon anodes for sodium-ion batteries[J]. Energy Storage Materials,2023,56:532-541. doi: 10.1016/j.ensm.2023.01.042
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  29
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-26
  • 录用日期:  2024-06-12
  • 修回日期:  2024-06-11
  • 网络出版日期:  2024-06-15

目录

    /

    返回文章
    返回