留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fluorescence color tuning of dual-emission biomass carbon quantum dots and their application in Fe3+ and Cu2+ detection

Xue Jia-jia GAN Mei-heng LU Yong-gen WU Qi-lin

薛佳佳, 甘美恒, 吕永根, 吴琪琳. 双发射生物质碳量子点的荧光颜色调谐及其在Fe3+和Cu2+检测中的应用. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60869-3
引用本文: 薛佳佳, 甘美恒, 吕永根, 吴琪琳. 双发射生物质碳量子点的荧光颜色调谐及其在Fe3+和Cu2+检测中的应用. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60869-3
Xue Jia-jia, GAN Mei-heng, LU Yong-gen, WU Qi-lin. Fluorescence color tuning of dual-emission biomass carbon quantum dots and their application in Fe3+ and Cu2+ detection. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60869-3
Citation: Xue Jia-jia, GAN Mei-heng, LU Yong-gen, WU Qi-lin. Fluorescence color tuning of dual-emission biomass carbon quantum dots and their application in Fe3+ and Cu2+ detection. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60869-3

双发射生物质碳量子点的荧光颜色调谐及其在Fe3+和Cu2+检测中的应用

doi: 10.1016/S1872-5805(24)60869-3
基金项目: 国家自然科学基金(52090033/52090030)
详细信息
    通讯作者:

    吴琪琳,博士,教授. E-mail:wql@dhu.edu.cn

Fluorescence color tuning of dual-emission biomass carbon quantum dots and their application in Fe3+ and Cu2+ detection

Funds: This work was supported by National Natural Science Foundation of China (52090033/52090030)
More Information
  • 摘要: 利用简单、环保的溶解热处理技术,成功地从生物质珊瑚叶中合成了双发射生物质碳量子点(D-BCQDs)。在单一的413 nm激发波长下,分别在490 nm和675 nm处出现了双发射峰。仅通过改变反应温度(140–240 °C),多色D-BCQDs 能分别发出深红色、红色、紫红色、紫色和蓝灰色荧光。XPS和FTIR表征表明,荧光颜色可调机制主要归因于表面氧化缺陷、氮元素含量和sp2-C/sp3-C杂化结构域。D-BCQDs不仅能分别检测Fe3+和Cu2+,还能量化混合溶液中Fe3+和Cu2+的比例,证明了其在同时检测多种离子方面的应用潜力。
  • Figure  1.  Schematic illustration of the synthesis of multicolor D-BCQDs (insets: the photographs of D-BCQDs solutions under daylight (left) and 365 nm UV light (right))

    Figure  2.  UV-Vis absorption, excitation, and emission spectra of (a) D-BCQDs1, (b) D-BCQDs2, (c) D-BCQDs3, (d) D-BCQDs4, (e) D-BCQDs5; (f) Comparison of UV-Vis absorption spectra of D-BCQDs

    Figure  3.  Fluorescence emission spectra at different excitation wavelengths: (a) D-BCQDs1, (b) D-BCQDs2, (c) D-BCQDs3, (d) D-BCQDs4 and (e) D-BCQDs5; (f) The influence of excitation wavelength on emission wavelength (D-BCQDs3 as an example)

    Figure  4.  TEM images of (a) D-BCQDs1, (b) D-BCQDs3, (c) D-BCQDs5 (insets: the corresponding particle size distribution); (d) XRD pattern of D-BCQDs3

    Figure  5.  (a) FT-IR and (b) XPS spectra of D-BCQDs

    Figure  6.  High-resolution XPS spectra of (a) D-BCQDs1, (b) D-BCQDs2, (c) D-BCQDs3, (d) D-BCQDs4 and (e) D-BCQDs5

    Figure  7.  (a) Fluorescence spectra of D-BCQDs at 413 nm excitation wavelength (inset: scatter plot of fluorescence intensities at 490 nm and 675 nm with the change of temperature); (b) F490/F675 of D-BCQDs at 413 nm excitation wavelength; (c) Oxygen content of D-BCQDs; (d) Nitrogen content of D-BCQDs

    Figure  8.  (a) Fluorescence photographs of D-BCQDs3 after adding different metal ions under 365 nm UV light; (b) The changes of fluorescence intensity of D-BCQDs3 after adding different metal ions

    Figure  9.  (a) The influence of Fe3+ concentration on the fluorescence intensity of D-BCQDs3 (inset: fluorescence photographs of D-BCQDs3 after adding different Fe3+ concentrations under 365 nm UV light); (b) The linear relationship between F675/F0 and Fe3+ concentration; (c) The influence of Cu2+ concentration on the fluorescence intensity of D-BCQDs3 (inset: fluorescence photographs of D-BCQDs3 after adding different Cu2+ concentrations under 365 nm UV light.); (d) The relationship between F490/F675 and Cu2+ concentration (inset: the linear relationship between F490/F675 and Cu2+ concentrations from 0.1 to 0.22 mM)

    Figure  10.  Interference of other metal ions in the detection of (a) Fe3+, (b) Cu2+

    Figure  11.  (a) The influence of different volume ratios of Fe3+ and Cu2+ on the fluorescence intensity of D-BCQDs; (b) The relationship between F490/F675 and VFe3+∶VCu2+

    Figure  12.  (a) The changes of UV-vis absorption spectra of D-BCQDs3 after adding Fe3+; (b) UV-Vis absorption spectra of Fe3+, excitation and emission spectra of D-BCQDs3; (c) The changes of fluorescence lifetime of D-BCQDs3 after adding Fe3+; (d) The changes of UV-vis absorption spectra of D-BCQDs3 after adding Cu2+; (e) UV-Vis absorption of Cu2+, excitation and emission spectra of D-BCQDs; (f) The changes of fluorescence lifetime of D-BCQDs3 after adding Cu2+

    Table  1.   Statistics on the percentage of sp2-C and sp3-C hybridization domains of multicolor D-BCQDs

    Samplessp2-C (%)sp3-C (%)sp2-C/sp3-C
    D-BCQDs176.1313.325.72
    D-BCQDs269.8119.653.55
    D-BCQDs354.3920.932.60
    D-BCQDs453.7020.732.59
    D-BCQDs548.6840.011.22
    下载: 导出CSV

    Table  2.   Comparison of different BCQDs for detecting Fe3+

    PrecursorsMethodsEmission peak (nm)Fluorescence colorLOD (µM)References
    Phyllanthus acidHydrothermal420Blue0.9[48]
    Poa pratensisHydrothermal420Blue1.4[49]
    Sugarcane molassesHydrothermal390Blue3.3[50]
    RosehipHydrothermal433Blue0.53[51]
    Cassava stemHydrothermal440Blue0.91[52]
    Coffee wasteHydrothermal450Blue4.314[53]
    Viburnum awabuki leavesSolvothermal490 and 675Purplish red0.592This work
    下载: 导出CSV

    Table  3.   Comparison of different BCQDs for detecting Cu2+

    PrecursorsMethodsEmission peak (nm)Fluorescence colorLOD (µM)References
    Ganoderma lucidum branHydrothermal450Blue0.74[54]
    RadishHydrothermal450Blue6.8[55]
    Acrocomia aculeateHydrothermal452Blue0.99[56]
    Musa acuminataHydrothermal420Blue1.65[57]
    Viburnum awabuki leavesSolvothermal490 and 675Purplish red0.405This work
    下载: 导出CSV
  • [1] Zhang H, Kang S, Wang G, et al. Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores[J]. ACS Sensors,2016,1(7):875-881. doi: 10.1021/acssensors.6b00269
    [2] Yahaya Pudza M, Zainal Abidin Z, Abdul Rashid S, et al. Eco-friendly sustainable fluorescent carbon dots for the adsorption of heavy metal ions in aqueous environment. Nanomaterials, 2020.
    [3] Liang Y, Xu L, Tang K, et al. Nitrogen-doped carbon dots used as an “on-off-on” fluorescent sensor for Fe3+ and glutathione detection[J]. Dyes and Pigments,2020,178:108358. doi: 10.1016/j.dyepig.2020.108358
    [4] Liu W, Zhang R, Kang Y, et al. Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells[J]. New Carbon Materials,2019,34(4):390-402. doi: 10.1016/S1872-5805(19)30024-1
    [5] Quang N K, Hieu N N, Bao V V Q, et al. Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging[J]. New Carbon Materials,2022,37(3):595-602. doi: 10.1016/S1872-5805(22)60608-5
    [6] Yuan Y, Guo B, Hao L, et al. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy[J]. Colloids and Surfaces B: Biointerfaces,2017,159:349-359. doi: 10.1016/j.colsurfb.2017.07.030
    [7] Wang G, Guo Q, Chen D, et al. Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian[J]. ACS Applied Materials & Interfaces,2018,10(6):5750-5759.
    [8] Wang L, Weng S, Su S, et al. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis[J]. RSC Advances,2023,13(28):19173-19194. doi: 10.1039/D3RA02519E
    [9] Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition,2013,52(14):3953-3957. doi: 10.1002/anie.201300519
    [10] Yan F, Jiang Y, Sun X, et al. Surface modification and chemical functionalization of carbon dots: a review[J]. Microchimica Acta,2018,185(9):424. doi: 10.1007/s00604-018-2953-9
    [11] Li L P, Ren X F, Bai P R, et al. Near-infrared emission carbon dots for bio-imaging applications[J]. New Carbon Materials,2021,36(3):632-638. doi: 10.1016/S1872-5805(21)60041-0
    [12] Qu Y, Li D, Liu J, et al. Magnolia denudata leaf-derived near-infrared carbon dots as fluorescent nanoprobes for palladium(Ⅱ) detection and cell imaging[J]. Microchemical Journal, 2022, 178.
    [13] Liu J, Geng Y, Li D, et al. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum[J]. Advanced Materials,2020,32(17):1906641. doi: 10.1002/adma.201906641
    [14] Liu J, Kong T, Xiong H-M. Mulberry-leaves-derived red-emissive carbon dots for feeding silkworms to produce brightly fluorescent silk[J]. Advanced Materials,2022,34(16):2200152. doi: 10.1002/adma.202200152
    [15] Pak S J, Park J Y, Chung J W, et al. Color tunable carbon quantum dots from wasted paper by different solvents for anti-counterfeiting and fluorescent flexible film[J]. Chemical Engineering Journal,2020,383:123200. doi: 10.1016/j.cej.2019.123200
    [16] Cheng C, Xing M, Wu Q. Preparation of carbon dots with long-wavelength and photoluminescence‐tunable emission to achieve multicolor imaging in cells[J]. Optical Materials,2019,88:353-358. doi: 10.1016/j.optmat.2018.12.007
    [17] Qin F, Bai J, Zhu Y, et al. Searching for the true origin of the red fluorescence of leaf-derived carbon dots[J]. Physical Chemistry Chemical Physics,2023,25(4):2762-2769. doi: 10.1039/D2CP05130C
    [18] Li J, Gong X. The emerging development of multicolor carbon dots[J]. Small,2022,18(51):2205099. doi: 10.1002/smll.202205099
    [19] Torti S V, Torti F M. Iron and cancer: more ore to be mined[J]. Nature Reviews Cancer,2013,13(5):342-355. doi: 10.1038/nrc3495
    [20] Bao X, Cao X, Nie X, et al. A new selective fluorescent chemical sensor for Fe3+ based on rhodamine B and a 1, 4, 7, 10-tetraoxa-13-azacyclopentadecane conjugate and its imaging in living cells[J]. Sensors and Actuators B: Chemical,2015,208:54-66. doi: 10.1016/j.snb.2014.10.127
    [21] Park S H, Kwon N, Lee J H, et al. Synthetic ratiometric fluorescent probes for detection of ions[J]. Chemical Society Reviews,2020,49(1):143-179. doi: 10.1039/C9CS00243J
    [22] Fu Q, Zhou X, Wang M, et al. Nanozyme-based sensitive ratiometric fluorescence detection platform for glucose[J]. Analytica Chimica Acta,2022,1216:339993. doi: 10.1016/j.aca.2022.339993
    [23] Liang Z, Zeng L, Cao X, et al. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH4OH passivation[J]. Journal of Materials Chemistry C,2014,2(45):9760-9766. doi: 10.1039/C4TC01714E
    [24] Wang W, Li Y, Cheng L, et al. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling[J]. Journal of Materials Chemistry B,2014,2(1):46-48. doi: 10.1039/C3TB21370F
    [25] Wang P, Yan Y, Zhang Y, et al. An Improved synthesis of water-soluble dual fluorescence emission carbon dots from holly leaves for accurate detection of mercury ions in living cells[J]. International Journal of Nanomedicine, 2021, Volume 16: 2045-2058.
    [26] Wang Y, Lao S, Ding W, et al. A novel ratiometric fluorescent probe for detection of iron ions and zinc ions based on dual-emission carbon dots[J]. Sensors and Actuators B: Chemical,2019,284:186-192. doi: 10.1016/j.snb.2018.12.139
    [27] Yang Y Z, Xiao N, Cen Y Y, et al. Dual-emission ratiometric nanoprobe for visual detection of Cu(II) and intracellular fluorescence imaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,223:117300. doi: 10.1016/j.saa.2019.117300
    [28] Liang C, Xie X, Zhang D, et al. Biomass carbon dots derived from Wedelia trilobata for the direct detection of glutathione and their imaging application in living cells[J]. Journal of Materials Chemistry B,2021,9(28):5670-5681. doi: 10.1039/D0TB02979C
    [29] Pang S, Liu S. Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase[J]. Analytica Chimica Acta,2020,1105:155-161. doi: 10.1016/j.aca.2020.01.033
    [30] Chen X P, Zhuang Y F, Lin J W, et al. Synthesis of N, S co-doped carbon dots for fluorescence detection of Fe3+ ions and intracellular pH imaging[J]. Chinese Journal of Analytical Chemistry,2022,50(11):100151. doi: 10.1016/j.cjac.2022.100151
    [31] Yang J, Ruan B, Ye Q, et al. Carbon dots-embedded zinc-based metal-organic framework as a dual-emitting platform for metal cation detection[J]. Microporous and Mesoporous Materials,2022,331:111630. doi: 10.1016/j.micromeso.2021.111630
    [32] Zheng Y, Wan Y, Wei Y, et al. One-pot synthesis of dual-emissive carbon dots for ratiometric fluorescent determination of Hg2+[J]. Journal of Fluorescence, 2023.
    [33] Jia M, Peng L, Yang M, et al. Carbon dots with dual emission: A versatile sensing platform for rapid assay of Cr (VI)[J]. Carbon,2021,182:42-50. doi: 10.1016/j.carbon.2021.05.050
    [34] Li L, Zhang R, Lu C, et al. In situ synthesis of NIR-light emitting carbon dots derived from spinach for bio-imaging applications[J]. Journal of Materials Chemistry B,2017,5(35):7328-7334. doi: 10.1039/C7TB00634A
    [35] Zhang T, Zhu J, Zhai Y, et al. A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission[J]. Nanoscale,2017,9(35):13042-13051. doi: 10.1039/C7NR03570E
    [36] Zhu S, Song Y, Zhao X, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective[J]. Nano Research,2015,8(2):355-381. doi: 10.1007/s12274-014-0644-3
    [37] Fang L Y, Zheng J T. Carbon quantum dots: Synthesis and correlation of luminescence behavior with microstructure[J]. New Carbon Materials,2021,36(3):625-631. doi: 10.1016/S1872-5805(21)60031-8
    [38] Wang L, Li W, Yin L, et al. Full-color fluorescent carbon quantum dots[J]. Science Advances, 6(40): eabb6772.
    [39] Pan L, Sun S, Zhang L, et al. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging[J]. Nanoscale,2016,8(39):17350-17356. doi: 10.1039/C6NR05878G
    [40] Ran Y, Wang S, Yin Q, et al. Green synthesis of fluorescent carbon dots using chloroplast dispersions as precursors and application for Fe3+ ion sensing[J]. Luminescence,2020,35(6):870-876. doi: 10.1002/bio.3794
    [41] Ma Y, Wu L, Ren X, et al. Toward kilogram-scale preparation of full-color carbon dots by simply stirring at room temperature in air[J]. Advanced Functional Materials, 2023, 2305867.
    [42] Tetsuka H. Nitrogen-functionalized graphene quantum dots: A versatile platform for integrated optoelectronic devices[J]. The Chemical Record,2020,20(5):429-439. doi: 10.1002/tcr.201900063
    [43] Xu J, Liang Q, Li Z, et al. Rational synthesis of solid-state ultraviolet B emitting carbon dots via acetic acid-promoted fractions of sp3 bonding strategy[J]. Advanced Materials,2022,34(17):2200011. doi: 10.1002/adma.202200011
    [44] Li H, Han S, Lyu B, et al. Tunable light emission from carbon dots by controlling surface defects[J]. Chinese Chemical Letters,2021,32(9):2887-2892. doi: 10.1016/j.cclet.2021.03.051
    [45] Yue J S, Yuan F Y, Qiu H X, et al. A review of fluorescent carbon dots: synthesis, photoluminescence mechanism, solid-state photoluminescence and applications in white light-emitting diodes[J]. New Carbon Materials,2023,38(3):478-492. doi: 10.1016/S1872-5805(23)60742-5
    [46] Wang B, Yu J, Sui L, et al. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal[J]. Advanced Science,2021,8(1):2001453. doi: 10.1002/advs.202001453
    [47] Li B, Ma H, Zhang B, et al. Dually emitting carbon dots as fluorescent probes for ratiometric fluorescent sensing of pH values, mercury(II), chloride and Cr(VI) via different mechanisms[J]. Microchimica Acta,2019,186(6):341. doi: 10.1007/s00604-019-3437-2
    [48] Atchudan R, Edison T N J I, Aseer K R, et al. Highly fluorescent nitrogen-doped carbon dots derived from Phyllanthus acidus utilized as a fluorescent probe for label-free selective detection of Fe3+ ions, live cell imaging and fluorescent ink[J]. Biosensors and Bioelectronics,2018,99:303-311. doi: 10.1016/j.bios.2017.07.076
    [49] Krishnaiah P, Atchudan R, Perumal S, et al. Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+[J]. Chemosphere,2022,286:131764. doi: 10.1016/j.chemosphere.2021.131764
    [50] Huang G, Chen X, Wang C, et al. Photoluminescent carbon dots derived from sugarcane molasses: synthesis, properties, and applications[J]. RSC Advances,2017,7(75):47840-47847. doi: 10.1039/C7RA09002A
    [51] Şenol A M, Bozkurt E. A green “off-on” fluorescent sensor to detect Fe3+ and ATP using synthesized carbon dots from Rosehip[J]. Research on Chemical Intermediates,2023,49(5):2175-2189. doi: 10.1007/s11164-023-04960-5
    [52] Qiu Y, Li D, Li Y, et al. Green carbon quantum dots from sustainable lignocellulosic biomass and its application in the detection of Fe3+[J]. Cellulose,2022,29(1):367-378. doi: 10.1007/s10570-021-04314-7
    [53] Won S, Kim J. The detection of Fe (III) and ascorbic acid by fluorescence quenching and recovery of carbon dots prepared from coffee waste[J]. Korean Journal of Chemical Engineering,2022,39(10):2826-2833. doi: 10.1007/s11814-022-1138-8
    [54] Wang B, Lan J, Ou J, et al. Ganoderma lucidum bran-derived blue-emissive and green-emissive carbon dots for detection of copper ions[J]. RSC Advances,2023,13(21):14506-14516. doi: 10.1039/D3RA02168H
    [55] Praneerad J, Thongsai N, Supchocksoonthorn P, et al. Multipurpose sensing applications of biocompatible radish-derived carbon dots as Cu2+ and acetic acid vapor sensors[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,211:59-70. doi: 10.1016/j.saa.2018.11.049
    [56] Raja S, Da Silva G T S T, Anbu S, et al. Biomass-derived carbon quantum dot: “On-off-on” fluorescent sensor for rapid detection of multi-metal ions and green photocatalytic CO2 reduction in water[J]. Biomass Conversion and Biorefinery, 2023.
    [57] Chaudhary N, Gupta P K, Eremin S, et al. One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions[J]. Journal of Environmental Chemical Engineering,2020,8(3):103720. doi: 10.1016/j.jece.2020.103720
    [58] Chen S, Yu Y L, Wang J H. Inner filter effect-based fluorescent sensing systems: A review[J]. Analytica Chimica Acta,2018,999:13-26. doi: 10.1016/j.aca.2017.10.026
    [59] Singh P, Arpita, Kumar S, et al. Assessment of biomass-derived carbon dots as highly sensitive and selective templates for the sensing of hazardous ions[J]. Nanoscale, 2023.
    [60] Molaei M J. Principles, mechanisms, and application of carbon quantum dots in sensors: a review[J]. Analytical Methods,2020,12(10):1266-1287. doi: 10.1039/C9AY02696G
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  25
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 录用日期:  2024-01-22
  • 修回日期:  2024-01-19
  • 网络出版日期:  2024-06-15

目录

    /

    返回文章
    返回