留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高比能快充型钠离子电池炭负极:进展与挑战

黎璟泓 张一波 贾怡然 杨晨旭 褚悦 张俊 陶莹 杨全红

黎璟泓, 张一波, 贾怡然, 杨晨旭, 褚悦, 张俊, 陶莹, 杨全红. 高比能快充型钠离子电池炭负极:进展与挑战. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60870-X
引用本文: 黎璟泓, 张一波, 贾怡然, 杨晨旭, 褚悦, 张俊, 陶莹, 杨全红. 高比能快充型钠离子电池炭负极:进展与挑战. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60870-X
LI Jing-hong, ZHANG Yi-bo, JIA Yi-ran, YANG Chen-xu, CHU Yue, ZHANG Jun, TAO Ying, YANG Quan-hong. Carbon anodes for high-energy and fast-charging sodium-ion batteries: progress and challenge. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60870-X
Citation: LI Jing-hong, ZHANG Yi-bo, JIA Yi-ran, YANG Chen-xu, CHU Yue, ZHANG Jun, TAO Ying, YANG Quan-hong. Carbon anodes for high-energy and fast-charging sodium-ion batteries: progress and challenge. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60870-X

高比能快充型钠离子电池炭负极:进展与挑战

doi: 10.1016/S1872-5805(24)60870-X
基金项目: 感谢国家重大科学研究计划(2021YFB2400400);国家自然科学基金面上项目(22379109);物质绿色创造与制造海河实验室和中央高校基本科研业务费专项。
详细信息
    作者简介:

    黎璟泓,硕士研究生,研究方向为钠离子电池碳负极材料设计与可控制备。E-mail:13927776599@163.com

    通讯作者:

    陶 莹,副教授,博士生导师,研究方向为碳基储能材料及二维材料。E-mail:yingtao@tju.edu.cn

    杨全红,教授,博士生导师,研究方向为碳功能材料、先进电池和储能技术。E-mail:qhyangcn@tju.edu.cn

  • 中图分类号: TQ127.1+1

Carbon anodes for high-energy and fast-charging sodium-ion batteries: progress and challenge

Funds: National Key R & D Program of China (No. 2021YFB2400400) ; National Natural Science Foundation of China (No. 22379109); Fundamental Research Funds for the Central Universities and Haihe Laboratory of Sustainable Chemical Transformations.
More Information
  • 摘要: 由于具有优异的快充与低温特性,并且钠元素资源丰富、成本低廉,钠离子电池成为下一代非资源限制型高效储能体系的首选。无定形炭材料是钠离子电池实用化进程的关键负极材料,具备较高首次库伦效率、低嵌钠平台、稳定性好等优点。然而,目前无定形炭负极存在平台储钠动力学差以及高平台容量与高平台电位无法兼得的问题,导致钠离子电池的快充性能、能量密度以及安全特性顾此失彼,严重制约了钠离子电池的产业化进程。本文聚焦制约钠离子电池碳负极发展的关键瓶颈,分析了无定形炭平台储钠各基元步骤的动力学行为,从电极-电解液界面和无定形炭微观结构调控两方面梳理了构建高比能快充型钠离子电池的工作进展,并探讨了影响平台储钠动力学与平台电位的关键要素,最后针对钠离子电池碳负极的发展方向与关键挑战进行了简要评述和展望,以期推动实用型钠离子电池碳负极材料的发展。
  • 图  1  (a) 在3 Ah圆柱电池体系下比较不同类型硬炭的快充性能;(b) HCS-1200在6.5 C/6.5 C循环3000圈后拆解的负极表面;(c) HCS-1600在6.5 C/6.5 C循环3000圈后拆解的负极表面[29]

    Figure  1.  (a) The comparison of fast charging performance among various types of hard carbons in a 3Ah cylindrical cell system; (b) The surface of the negative electrode of HCS-1200 after 3000 cycles at 6.5C/6.5C; (c) The surface of the negative electrode of HCS-1600 after 3000 cycles at 6.5C/6.5C[29]. Reproduced by permission of Springer Nature

    图  2  (a) 代表性无定形炭负极的平台容量与平台工作电位[18,26,27,29,32,33,34,35];(b) 不同类型的钠电无定形炭放电曲线,以及与锂电石墨放电曲线比较

    Figure  2.  (a) Relationship between plateau capacity and plateau working potential (summary of results for representative disordered carbon anodes); (b) Discharge curves of different types of disordered carbon compared with the discharge curve of graphite for lithium-ion battery

    图  3  无定形炭的平台段储钠历程

    Figure  3.  Schematic diagram of the sodium storage process in the plateau region of disordered carbon

    图  4  (a)在醚类/酯类电解质中SEI的形成情况对比[54];(b)优化钠离子溶剂化结构提升界面传输速率[57];(c)无定形炭表面化学修饰构筑富无机组分的SEI[43];(d)3A分子筛膜实现钠离子逐步脱溶剂化[32]

    Figure  4.  (a) Comparison of the formation of SEI in ether/ester electrolytes.Reproduced by permission of RSC publishing [54]; (b) Schematic of optimized sodium ion solvation structures. Reproduced by permission of Wiley-VCH[57]; (c) Schematic of constructing an inorganic-rich SEI on the disorderded carbon surface through oxygen-containing functional group modification. Reproduced by permission of Wiley-VCH[43]; (d) Schematic of the step-by-step desolvation of sodium ions using a 3A molecular sieve as artificial SEI. Reproduced by permission of PNAS[32]

    图  5  (a)调控碳层间距与微晶尺寸实现扩散系数提升的示意图[40];(b)Zn单原子掺杂策略示意图[50];(c)分子动力学模拟平台段钠密度图以及扩散机制解析示意图[29]

    Figure  5.  (a) Schematic of the regulation of interlayer carbon spacing and microcrystal size to enhance diffusion coefficients. Reproduced by permission of Wiley-VCH[40]; (b) Schematic of Zn single-atom doping strategy. Reproduced by permission of Wiley-VCH[50]; (c) Na density plot over the MD simulation depicted from the side and top view and the depiction of correlated diffusion in the pore. Reproduced by permission of Springer Nature[29]

    图  6  (a)不同碳化温度硬炭原位固体核磁图(孔径:1500°C>1100°C)[31];(b)非原位固体核磁研究筛分型碳孔腹尺寸与钠团簇化学位移关系图[27];(c)钠/锂在真空、在单片石墨烯层上、在孔内三种不同环境下的界面电势差比较[29];(d)钠在孔内不同排布方式对钠-碳体系的相对稳定性影响[29];(e)填充炭制备过程示意图[35]

    Figure  6.  (a)In-situ 23Na ssNMR spectra of hard carbon produced at different carbonization temperatures (pore size: 1500°C > 1100°C). Reproduced by permission of American Chemical Society[31] ; (b) Ex-situ 23Na ssNMR study of the relationship between sieving carbon pore size and sodium cluster chemical shift. Reproduced by permission of Oxford university press[27]; (c) Voltage comparison of sodium/lithium in three different environments: in vacuum, on a single graphene layer, and inside pores. Reproduced by permission of Springer Nature[29]; (d) Effect of different arrangements of sodium in pores on the relative stability of the sodium-carbon system. Reproduced by permission of Springer Nature[29]; (e) Schematic of the synthetic procedure of the filling carbon. Reproduced by permission of RSC publishing[35]

  • [1] Huang X J, Meng Q B, Chen H, et al. Renewable energy conversion, storage, and efficient utilization[J]. Science,2018,360(6389):47-51.
    [2] Ellingsen L A, Hung C R, et al. Nanotechnology for environmentally sustainable electromobility[J]. Nature Nanotechnology,2016,11:1039-1051. doi: 10.1038/nnano.2016.237
    [3] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry,2015,7(1):19-29. doi: 10.1038/nchem.2085
    [4] Schmuch R, Wagner R, Horpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy,2018,3:267-278. doi: 10.1038/s41560-018-0107-2
    [5] King A D, Donat M G, Lewis S C, Henley B J, Mitchell D M, et al. Reduced heat exposure by limiting global warming to 1.5°C. Nature Climate Change, 2018, 8: 549-551.
    [6] Liao F, Molin E, et al. Consumer preferences for electric vehicles: a literature review[J]. Transport Review,2016,37:252-275.
    [7] Meintz A, Zhang J, Vijayagopal R, et al. Enabling fast charging-Vehicle considerations[J]. Journal of Power Sources,2017,367:216-227. doi: 10.1016/j.jpowsour.2017.07.093
    [8] Tomaszewska A, Chu Z, Feng X, et al. Lithium-ion battery fast charging: A review[J]. eTransportation,2019,1:100011. doi: 10.1016/j.etran.2019.100011
    [9] Ahmed S, Bloom I, et al. Enabling fast charging - A battery technology gap assessment[J]. Journal of Power Sources,2017,367:250-262. doi: 10.1016/j.jpowsour.2017.06.055
    [10] Cai W L, Yao Y X, Zhu G L, et al. A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews,2020,49:3806. doi: 10.1039/C9CS00728H
    [11] Pender J P, Jha G, Youn D H, et al. Electrode Degradation in Lithium-Ion Batteries[J]. ACS Nano,2020,14:1243-1295. doi: 10.1021/acsnano.9b04365
    [12] Logan E, Dahn J. Electrolyte Design for Fast-Charging Li-Ion Batteries[J]. Trends in Chemistry,2020,2:354-366. doi: 10.1016/j.trechm.2020.01.011
    [13] Armand M, Tarascon J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
    [14] Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews,2017,46(12):3529-3614. doi: 10.1039/C6CS00776G
    [15] Vaalma C, Buchholz D, Weil M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials,2018,3(4):1-11.
    [16] Sun N, Qiu J S, Xu B. Understanding of Sodium Storage Mechanism in Hard Carbons: Ongoing Development under Debate[J]. Advanced Energy Materials,2022,12:2200715. doi: 10.1002/aenm.202200715
    [17] Stratford J M, Allan P K, Pecher O, et al. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes[J]. Chemical Communications,2016,52(84):12430-12433. doi: 10.1039/C6CC06990H
    [18] Chen X Y, Tian J Y, Cao Y L, et al. An Overall Understanding of Sodium Storage Behaviors in Hard Carbons by an “Adsorption-Intercalation/Filling” Hybrid Mechanism[J]. Advanced Energy Material, 2022, 2200886.
    [19] Sun N, Guan Z, Liu Y W, Cao Y L, Zhu Q Z, Liu H, Wang Z X, Zhang P, Xu B. Extended “Adsorption-Insertion” Model: A New Insight into the Sodium Storage Mechanism of Hard Carbons[J]. Advanced Energy Material,2019,9:1901351. doi: 10.1002/aenm.201901351
    [20] Jian Z L, Bommier C, Luo L L, et al. Insights on the mechanism of Na-ion storage in soft carbon anode[J]. Chemistry of Materials,2017,29(5):2314-2320. doi: 10.1021/acs.chemmater.6b05474
    [21] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society,2000,147(4):1271. doi: 10.1149/1.1393348
    [22] Alvin S, Yoon D, Chandra C, et al. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon,2019,145:67-81. doi: 10.1016/j.carbon.2018.12.112
    [23] Ren Q J, Wang J, Yan L, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior[J]. Chemical Engineering Journal,2021,425:131656. doi: 10.1016/j.cej.2021.131656
    [24] Chen X Y, Tian J Y, Li P, et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism[J]. Advanced Energy Materials,2022,12(24):2200886. doi: 10.1002/aenm.202200886
    [25] Meng Q S, Lu Y X, Ding F X, et al. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Letters,2019,4(11):2608-2612. doi: 10.1021/acsenergylett.9b01900
    [26] Kamiyama A, Kubota K, Igarashi D, et al. MgO-Template synthesis of extremely high capacity hard carbon for Na-ion battery[J]. Angewandte Chemie International Edition,2021,60:5114-5120. doi: 10.1002/anie.202013951
    [27] Li Q, Liu X S, Tao Y, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review,2022,9(8):nwac084. doi: 10.1093/nsr/nwac084
    [28] Zheng Z, Hu S J, Yin W J, et al. CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage[J]. Advanced Energy Materials,2024,14:2303064. doi: 10.1002/aenm.202303064
    [29] Li Y Q, Vasileiadis A, Zhou Q, et al. Origin of fast charging in hard carbon anodes[J]. Nature Energy,2024,9:134-142. doi: 10.1038/s41560-023-01414-5
    [30] Morikawa Y, Nishimura S, Hashimoto R, et al. Mechanism of sodium storage in hard carbon: An X-ray scattering analysis[J]. Advanced Energy Materials,2020,10(3):1903176. doi: 10.1002/aenm.201903176
    [31] Stratford J M, Kleppe A K, Keeble D S, et al. Correlating local structure and sodium storage in hard carbon anodes: insights from pair distribution function analysis and solid-state NMR[J]. Journal of the American Chemical Society,2021,143(35):14274-14286. doi: 10.1021/jacs.1c06058
    [32] Lu Z Y, Geng C N, Yang H J, et al. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(40):e2210203119.
    [33] Zhang S W, Lv W, Luo C, et al. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries[J]. Energy Storage Materials,2016,3:18-23. doi: 10.1016/j.ensm.2015.12.004
    [34] Li Y M , Hu Y S, Titirici M M, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6: 1600659.
    [35] Chen X Y, Sawut N, Chen K, et al. Filling carbon: a microstructure-engineered hard carbon for efficient alkali metal ion storage[J]. Energy Environmental Science,2023,16:4041-4053. doi: 10.1039/D3EE01154B
    [36] Chayambuka K, Mulder G, Danilov D L, et al. Sodium-Ion Battery Materials and Electrochemical Properties Reviewed[J]. Advanced Energy Materials,2018,8:1800079. doi: 10.1002/aenm.201800079
    [37] Xu K, Lam Y F, Zhang S S, et al. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of Graphite/Electrolyte Interface Chemistry[J]. The Journal of Physical Chemistry C,2007,111:7411-7421.
    [38] Eshetu G G, Elia G A, Armand M, et al. Electrolytes and Interphases in Sodium-Based Rechargeable Batteries: Recent Advances and Perspectives[J]. Advanced Energy Materials,2020,10:2000093. doi: 10.1002/aenm.202000093
    [39] Song J H, Xiao B W, Lin Y H, Xu K, Li X L, et al. Interphases in sodium-ion batteries[J]. Advanced Energy Materials,2018,8:1703082. doi: 10.1002/aenm.201703082
    [40] Yin X P, Lu Z X, Wang J, et al. Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage[J]. Advanced Materials,2022,34(13):2109282. doi: 10.1002/adma.202109282
    [41] Jónsson E, Johansson P. Modern battery electrolytes: Ion-ion interactions in Li+/Na+ conductors from DFT calculations[J]. Physical Chemistry Chemical Physics,2012,14:10774. doi: 10.1039/c2cp40612h
    [42] Okoshi M, Yamada Y, Yamada A, Nakai H. Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents[J]. Journal of The Electrochemical Society,2013,160:A2160. doi: 10.1149/2.074311jes
    [43] Liu M Q, Wu F, Gong Y T, et al. Interfacial-catalysis-enabled layered and inorganic-rich SEI on hard carbon anodes in ester electrolytes for sodium-ion batteries[J]. Advanced Materials,2023,35:2300002. doi: 10.1002/adma.202300002
    [44] Xiao L F, Cao Y L, et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries[J]. Nano Energy,2016,19:279-288. doi: 10.1016/j.nanoen.2015.10.034
    [45] Ledwocha D, Komsiyskac L, et al. Determining the electrochemical transport parameters of sodium-ions in hard carbon composite electrodes[J]. Electrochimica Acta,2022,401:139481. doi: 10.1016/j.electacta.2021.139481
    [46] Dong R Q, Zheng L, Bai Y, et al. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes[J]. Advanced Materials,2021,33:2008810. doi: 10.1002/adma.202008810
    [47] Xie X, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature,2009,458:746-749. doi: 10.1038/nature07877
    [48] Li X M, Wang S J, Tang X, et al. Porous Na3V2(PO4)3/C nanoplates for high-performance sodium storage[J]. Journal of Colloid and Interface Science,2019,539:168-174. doi: 10.1016/j.jcis.2018.12.071
    [49] Dees D W, Kawauchi S, Abraham D P, Prakash J. Analysis of the galvanostatic intermittent titration technique (GITT) as applied to a lithium-ion porous electrode[J]. Journal of Power Sources,2009,189:263-268. doi: 10.1016/j.jpowsour.2008.09.045
    [50] Lu Z X, Wang J, Feng W L, et al. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries[J]. Advanced Materials,2023,35:2211461. doi: 10.1002/adma.202211461
    [51] Winter M, Barnett B, Xu K. Before Li ion batteries[J]. Chemical Reviews,2018,118:11433-11456. doi: 10.1021/acs.chemrev.8b00422
    [52] Li M, Lu J, Chen Z, Amine K. 30 Years of lithium-ion batteries[J]. Advanced Materials,2018,30:1800561. doi: 10.1002/adma.201800561
    [53] Ponrouch A, Monti D, Boschin A, et al. Non-aqueous electrolytes for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:22-42. doi: 10.1039/C4TA04428B
    [54] Zhang J, Wang D W, Lv W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase[J]. Energy Environmental Science,2017,10:370-376. doi: 10.1039/C6EE03367A
    [55] Liao Y Q, Yuan L X, Han Y, et al. Pentafluoro (phenoxy) cyclotriphosphazene stabilizes electrode/electrolyte interfaces for sodium-ion pouch cells of 145 Wh Kg -1[J]. Advanced Materials, 2024, 2312287.
    [56] Tian Z N, Zou Y G, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Advanced Science,2022,9:2201207. doi: 10.1002/advs.202201207
    [57] Tang Z, Wang H, et al. Electrode-electrolyte interfacial chemistry modulation for ultra high rate sodium-ion batteries[J]. Angewandte Chemie International Edition,2022,61:e202200475. doi: 10.1002/anie.202200475
    [58] Wang H P, Zhu C L, Liu J D, et al. Formation of NaF-rich solid electrolyte interphase on Na anode through additive-induced anion-enriched structure of Na+ solvation[J]. Angewandte Chemie International Edition,2022,61:e202208506. doi: 10.1002/anie.202208506
    [59] Lu Z Y, Yang H J, et al. Consummating ion desolvation in hard carbon anodes for reversible sodium storage[J]. Nature Communications,2024,15:3497. doi: 10.1038/s41467-024-47522-y
    [60] Sun Y, Hou R L, et al. Molecular Engineering Enabling High Initial Coulombic Efficiency and Rubost Solid Electrolyte Interphase for Hard Carbon in Sodium-Ion Batteries[J]. Angewandte Chemie International Edition,2024,63:e202318960. doi: 10.1002/anie.202318960
    [61] Lu H Y, Chen X Y, Jia Y L, et al. Engineering Al2O3 atomic layer deposition: Enhanced hard carbonelectrolyte interface towards practical sodium ion batteries[J]. Nano Energy,2019,64:103903. doi: 10.1016/j.nanoen.2019.103903
    [62] Jin Q Z, Wang K L, et al. Tuning microstructures fot hard carbon or high capacity and rate sodium storage[J]. Chemical Engineering Journal,2021,417:128104. doi: 10.1016/j.cej.2020.128104
    [63] Feng X, Li Y, Li Y, et al. Unlocking the local structure of hard carbon to grasp sodium-ion diffusion behavior for advanced sodium-ion batteries[J]. Energy & Environmental Science,2024,17:1387.
    [64] Xie F, Xu Z, Guo Z, Lu Y, Chen L, Titirici MM, Hu YS. Disordered carbon anodes for Na-ion batteries—quo vadis?[J]. Science China Chemistry,2021,64:1679-1692. doi: 10.1007/s11426-021-1074-8
    [65] Tang Z, Zhang R, Wang H Y, et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery[J]. Nature Communications,2023,14:6024. doi: 10.1038/s41467-023-39637-5
    [66] Chu Y, Zhang J, Zhang Y B, et al. Reconguring hard carbons with emerging sodium-ion batteries: a perspective[J]. Advanced Materials,2023,35:2212186. doi: 10.1002/adma.202212186
    [67] Igarashi D, Tanaka Y, Kubota K, et al. New Template Synthesis of Anomalously Large Capacity Hard Carbon for Na- and K-Ion Batteries[J]. Advanced Energy Materials,2023,13:230264.
    [68] Kim D W, Kil H S, et al. Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model[J]. Carbon,2017,114:98e105.
    [69] Li Q, Zhang J, Zhong L X, et al. Unraveling the Key Atomic Interactions in Determining the Varying Li/Na/K Storage Mechanism of Hard Carbon Anodes[J]. Advanced Energy Materials, 2022, 2201734.
  • 加载中
图(6)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  34
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-22
  • 录用日期:  2024-06-20
  • 修回日期:  2024-06-20
  • 网络出版日期:  2024-06-25

目录

    /

    返回文章
    返回