留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on carbon coating of silicon anode in high-performance lithium-ion batteries

XU Ze-yu SHAO Hai-bo WANG Jian-ming

徐泽宇, 邵海波, 王建明. 高性能锂离子电池硅阳极碳包覆涂层的研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60871-1
引用本文: 徐泽宇, 邵海波, 王建明. 高性能锂离子电池硅阳极碳包覆涂层的研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60871-1
XU Ze-yu, SHAO Hai-bo, WANG Jian-ming. Research progress on carbon coating of silicon anode in high-performance lithium-ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60871-1
Citation: XU Ze-yu, SHAO Hai-bo, WANG Jian-ming. Research progress on carbon coating of silicon anode in high-performance lithium-ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60871-1

高性能锂离子电池硅阳极碳包覆涂层的研究进展

doi: 10.1016/S1872-5805(24)60871-1
基金项目: 国家自然科学基金(22372147).
详细信息
    通讯作者:

    王建明,教授. E-mail:wjm@zju.edu.cn

Research progress on carbon coating of silicon anode in high-performance lithium-ion batteries

Funds: This work was supported by the National Natural Science Foundation of China (No. 22372147)
More Information
  • 摘要: 近年来,能源需求的快速增长极大地促进了锂离子电池的发展。硅阳极以其极高的理论容量、相对较低的Li嵌入电压和丰富的硅资源而备受关注。然而,充放电过程中巨大的体积膨胀和脆弱的固体电解质界面(SEI)膜阻碍了硅基阳极的商业应用。将Si材料与各种碳材料相结合,有利于增强材料结构稳定性和优化电极界面特性。本文介绍了作为硅阳极三维保护涂层的不同碳材料,概述了其主要制备方法。迄今为止,碳材料作为硅阳极保护涂层仍存在一些不足,有必要对碳保护涂层进行改性处理。重点介绍了碳保护涂层改性的最新研究进展,提出了硅阳极三维碳涂层的潜在替代材料。本综述将为高性能锂离子电池硅阳极三维保护涂层的设计提供一定的指导和参考。
  • Figure  1.  Prominent issues of Si as LIBs anode

    Figure  2.  In-depth X-ray photoelectric spectroscopy (XPS) of Hept-SiNP (a) and Tol-SiNP (b) electrodes after cycling[24]. (Reprinted with permission)

    Figure  3.  Schematic diagram of the preparation for Si@C hybrids using poly(vinyl alcohol) (PVA)/melamine resin (MR) (a), resorcinol−formaldehyde resin (RF) (b), polydopamine (PDA) (c), and glucose (GLU) (d) as carbon precursors. Cyclic properties at a rate of 0.4 A g−1 (e) and rate properties at different rates (f) of all the samples. Long-term cycling performances of Si@CMR at 2 and 3 A g−1 (g)[58]. (Reprinted with permission)

    Figure  4.  Schematic illustration of the preparation for the Si@C@viod@C (a)[59]. Schematic illustration of the synthesis for the Si@viod@C (b)[60]. Schematic diagram of the fabrication of the Si@void@C with CaCO3 as template (c)[61]. Schematic diagram of the synthesis process of Si@void@C composites by the templateless method (d). Cycling properties of H-Si@void@C, M-Si@void@C, and L-Si@void@C anodes at 2.0 A g−1, along with the corresponding Coulombic efficiency of the M-Si@void@C anode (e). Discharge and charge profiles of the M-Si@void@C anode at different cycles (f). Cycling stability of the M-Si@void@C anode at current density of 0.1 A g−1 (g). Rate performance of H-Si@void@C, M-Si@void@C, and L-Si@void@C anodes (h)[63]. (Reprinted with permission)

    Figure  5.  Schematic illustration for the synthesis of SiNPs@C (Route I) and pSiMS@C (Route II) core-shell composites using SiAl@Al-MOF as precursor (a). Long-term cycling stability of SiNPs@C and pSiMS@C anodes at 1 A g−1 (b)[65]. Schematic illustration of the preparation for SiNDs$ \subset $MDNs composite (c). Cycling stability of the SiNDs$ \subset $MDNs anode at 1 A g−1 (d)[67]. (Reprinted with permission)

    Figure  6.  Schematic illustration of the preparation for Si@n-SiO2/C composite (a)[51]. Schematic diagram of the synthetic route (b) and preparation of the Si NDs$ \subset $C composites (c). Illustrations of the most energy favorable pathways for DPS pyrolysis derived from DFT simulations with (green lines) or without (blue lines) Sn atom cluster catalysts (d). Discharge-charge profiles of the Si NDs$ \subset $C electrode at 0.1 A g−1 (e). Cycling performances of the Si NDs$ \subset $C electrode at 0.1 A g−1 and 1 A g−1 (f). Rate capability of the Si NDs$ \subset $C electrode (g)[68]. (Reprinted with permission)

    Figure  7.  Schematic illustration of the preparation of Si@C-Pitch and Si@C-PR composites (a). TGA curves of Si@C-Pitch and Si@C-PR composites (b). Roman (c) and UV-vis (d) spectra of Si@C-PR and Si@C-Pitch. Powder conductivity plot of all samples (e). Cycle performances of all samples (f)[110]. (Reprinted with permission)

    Figure  8.  Illustration of the surface adsorption and self-association of PAM in heavy oil tuned at a molecular level by controlling the aromaticity of solvents to form fullerene-like structures of carbon coatings (a). HR-TEM images of the carbon layers after removing silicon nanoparticles of Hept-SiNP (b) and Tol-SiNP (c). Nanoindentation trace of Hept-carbon and Tol-carbon coating on silicon wafer surfaces (d). Cyclability of Hept-SiNP, Tol-SiNP and Bare-Si electrodes at 0.2 C (1 C=3579 mA g−1) (e)[24]. (Reprinted with permission)

    Figure  9.  Schematic illustration of the synthesis of the flake graphite@Si@C composite (a). Cycling performances of G-2@Si@C and G-12@Si@C electrodes at 0.2 C (b). Rate properties of G-2@Si@C and G-12@Si@C electrodes (c)[127]. Schematic diagram of the spray dryer used: (1) blower and air filter; (2) air compressor; (3) heater; (4) peristaltic pump; (5) temperature control; (6) inlet thermocouple; (7) atomizer: (α) compressed air; (β) feed microencapsulating composition; (8) drying chamber; (9) cyclone; (10) dry product collector (d)[129]. Rate performances of Si/C-FG, Si/C-AG and Si/C-SC electrodes (e). Cycling performances of Si/C-FG, Si/C-AG and Si/C-SC electrodes 1 A g−1 (f)[131]. (Reprinted with permission)

    Figure  10.  Schematic diagram for the latest research progress and future prospects of 3D carbon coated silicon anodes for LIBs

    Table  1.   A summary of various methods to designing multilayered Si@void@amorphous carbon compositesa

    Preparation Method Fabrication Mechanism Materials Rate Cycle Number Capacity ICE Reference
    Template method CVD and sacrificial CaCO3 Granadilla-like Si@void@C 0.25 200 ~1100 80% [37]
    Thermal carbonization and sacrificial SiO2 Si@C@void@C 0.5 50 1356.1 ~61% [59]
    Thermal carbonization and sacrificial SiO2 Si@void@C 1 250 ~600 84.9% [60]
    Thermal carbonization and sacrificial CaCO3 Si@void@C 0.3 100 973.2 70.4% [61]
    Templateless method Inner shell lost during thermal carbonization
    due to its low carbon yield
    Si@C@void@C 1 500 630 60% [62]
    Dissolution of carbon precursor inner layer in organic
    solvent and thermal carbonization
    Si@void@C 2 1000 1018.6 65.3% [63]
    aRate and capacity are expressed as A g−1 and mAh g−1, respectively. All the specific capacities and testing rates were based on the total weight of active materials in the electrodes.
    下载: 导出CSV

    Table  2.   A summary of various Si@amorphous carbon compositesa

    Preparation
    Method
    Carbon Resource Materials Rate Cycle Number Capacity ICE Reference
    CVD Toluene Si@void@C 1 100 901 62.5% [33]
    Acetylene Si-20@C 3.6 500 915.8 75.9% [36]
    Acetylene Granadilla-like Si@void@C 0.25 200 ~1100 80% [37]
    Thermal
    carbonization
    Poly(vinyl alcohol) (PVA)/melamine resin Si@CMR 0.4 200 1614.6 ~71% [58]
    Resorcinol–formaldehyde resin (RF) Si@CRF 1064.5 /
    Polydopamine (PDA) Si@CPDA 880.1 /
    Polyglucose (PGLU) Si@CGLU 700.1 /
    Al-MOF pSiMS@C 1 500 1027.8 69.8% [65]
    Zn, Co bimetallic ZIFs Si/SiOx@NC 0.5 400 ~300 49% [66]
    ZIF-8 SiNDs$ \subset $MDNs 1 1000 1172 87.9% [67]
    APTES Si@n-SiO2/C 1 300 800.7 62.2% [51]
    Diphenylsilane (DPS) SiNDs$ \subset $C 1 1500 647 64.6% [68]
    Glucose Bubble sheet-like carbon film
    supported core–shell Si/C
    1 200 1018 ~72% [82]
    Citric acid Si@porous carbon 0.5 200 712.6 61.3% [83]
    Pyridine Onion-like Si/C 0.2 400 1391 84.5% [84]
    CO2 Nano-porous Si@C 0.5 500 912 84.6% [55]
    CaCO3 Diatomite-derived Si@C 4 500 764.6 70.2% [56]
    aRate and capacity are expressed as A g−1 and mAh g−1, respectively. All the specific capacities and testing rates were based on the total weight of active materials in the electrodes.
    下载: 导出CSV

    Table  3.   A summary of various Si@graphite compositesa

    Preparation Method Materials Rate Cycle Number Capacity ICE Reference
    CVD Flake graphite@Si@C 0.2 100 957 86.3% [127]
    Liquid solidification Si@C@graphite 0.13 100 712 79.8% [128]
    Spray drying Si@graphite@PDA-C 0.3 100 611.3 78.1% [130]
    High-energy mechanical milling Si@graphite@artificial graphite 0.5 200 445 64% [131]
    aRate and capacity are expressed as A g−1 and mAh g−1, respectively. All the specific capacities and testing rates were based on the total weight of active materials in the electrodes.
    下载: 导出CSV

    Table  4.   A summary of some Si@elastic polymer compositesa

    Materials Preparation Method Rate Cycle Number Capacity ICE Reference
    SiNPs@PANi In-situ wet-chemical method 0.75 1000 ~900 ~70% [138]
    SiNPs-TMSPA-LCP (layered conductive PANi) In-situ wet-chemical method 1 300 ~1000 76% [139]
    Si@PMMA In-situ wet-chemical method 2 200 ~1000 91.9% [140]
    Si/C@PHATN [poly(hexaazatrinaphthalene)] In-situ wet-chemical method 1 500 1129.6 81.3% [141]
    PPy@PHSi (porous hollow Si) Mg reduction and in-situ wet-chemical method 4 100 1161 68% [142]
    Micro-sized silicon caged by PPy In-situ wet-chemical method 0.84 500 1299.8 78.2% [143]
    Si-e-PPy In-situ wet-chemical method 1 500 1153.2 93.2% [136]
    PSi@PPy-Fe In-situ polymerization by photo-initiated oxidation 1 200 1853.7 77.7% [137]
    aRate and capacity are expressed as A g−1 and mAh g−1, respectively. All the specific capacities and testing rates were based on the total weight of active materials in the electrodes.
    下载: 导出CSV
  • [1] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414(6861):359-367. doi: 10.1038/35104644
    [2] Armand M, Tarascon J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
    [3] Chae S, Choi S H, Kim N, et al. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries[J]. Angewandte Chemie-International Edition,2020,59(1):110-135. doi: 10.1002/anie.201902085
    [4] Jin C B, Shi P, Zhang X Q, et al. Advances in carbon materials for stable lithium metal batteries[J]. New Carbon Materials,2022,37(1):1-21. doi: 10.1016/S1872-5805(22)60573-0
    [5] Kwon T W, Choi J W, Coskun A. Prospect for supramolecular chemistry in high-energy-density rechargeable batteries[J]. Joule,2019,3(3):662-682. doi: 10.1016/j.joule.2019.01.006
    [6] Wu S, Di F, Zheng J G, et al. Self-healing polymer binders for the Si and Si/carbon anodes of lithium-ion batteries[J]. New Carbon Materials,2022,37(5):802-826. doi: 10.1016/S1872-5805(22)60638-3
    [7] Xu Z Y, Hou Y P, Guo J F, et al. Metallic tin nanoparticle-reinforced tin-doped porous silicon microspheres with superior electrochemical lithium storage properties[J]. ACS Applied Energy Materials,2021,4(12):14141-14154. doi: 10.1021/acsaem.1c02916
    [8] Lin J, Wang L S, Xie Q S, et al. Stainless steel-like passivation inspires persistent silicon anodes for lithium-ion batteries[J]. Angewandte Chemie-International Edition, 2023: e202216557.
    [9] Zhang L Y, Wang H, Qin N, et al. A high-rate and ultrastable anode for lithium ion capacitors produced by modifying hard carbon with both surface oxidation and intercalation[J]. New Carbon Materials,2022,37(5):1000-1010. doi: 10.1016/S1872-5805(22)60632-2
    [10] Shi Q T, Zhou J H, Ullah S, et al. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Materials,2021,34:735-754. doi: 10.1016/j.ensm.2020.10.026
    [11] Wang W, Kumta P N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes[J]. ACS Nano,2010,4(4):2233-2241. doi: 10.1021/nn901632g
    [12] Cui L F, Hu L B, Choi J W, et al. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries[J]. ACS Nano,2010,4(7):3671-3678. doi: 10.1021/nn100619m
    [13] Liu H P, Qiao W M, Zhan L, et al. In situ growth of a carbon nanofiber/Si composite and its application in Li-ion storage[J]. New Carbon Materials,2009,24(2):124-130. doi: 10.1016/S1872-5805(08)60042-6
    [14] Su J M, Zhao J Y, Li L Y, et al. Three-dimensional porous Si and SiO2 with in situ decorated carbon nanotubes as anode materials for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(21):17807-17813.
    [15] Chen Y L, Hu Y, Shao J Z, et al. Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries[J]. Journal of Power Sources,2015,298:130-137. doi: 10.1016/j.jpowsour.2015.08.058
    [16] Casimir A, Zhang H G, Ogoke O, et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation[J]. Nano Energy,2016,27:359-376. doi: 10.1016/j.nanoen.2016.07.023
    [17] Qi Y, Wang G, Li S, et al. Recent progress of structural designs of silicon for performance -enhanced lithium -ion batteries[J]. Chemical Engineering Journal,2020,397:125380. doi: 10.1016/j.cej.2020.125380
    [18] Ji J Y, Ji H X, Zhang L L, et al. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries[J]. Advanced Materials,2013,25(33):4673-4677. doi: 10.1002/adma.201301530
    [19] Zhang Y L, Mu Z J, Lai J P, et al. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage[J]. ACS Nano,2019,13(2):2167-2175.
    [20] An Y L, Tian Y, Wei H, et al. Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode[J]. Advanced Functional Materials,2020,30(9):1908721. doi: 10.1002/adfm.201908721
    [21] Zhang Z H, Ying H J, Huang P F, et al. Porous Si decorated on MXene as free-standing anodes for lithium-ion batteries with enhanced diffusion properties and mechanical stability[J]. Chemical Engineering Journal,2023,451:138785. doi: 10.1016/j.cej.2022.138785
    [22] Kong F Y, He X D, Liu Q Q, et al. Enhanced reversible Li-ion storage in Si@Ti3C2 MXene nanocomposite[J]. Electrochemistry Communications,2018,97:16-21. doi: 10.1016/j.elecom.2018.10.003
    [23] Hui X B, Zhao R Z, Zhang P, et al. Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries[J]. Advanced Energy Materials,2019,9(33):1901065. doi: 10.1002/aenm.201901065
    [24] Tan W, Yang F, Yi T T, et al. Fullerene-like elastic carbon coatings on silicon nanoparticles by solvent controlled association of natural polyaromatic molecules as high-performance lithium-ion battery anodes[J]. Energy Storage Materials,2022,45:412-421. doi: 10.1016/j.ensm.2021.11.040
    [25] Chen S Q, Shen L F, van Aken P A, et al. Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries[J]. Advanced Materials,2017,29(21):1605650. doi: 10.1002/adma.201605650
    [26] Song J X, Chen S R, Zhou M J, et al. Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A,2014,2(5):1257-1262. doi: 10.1039/C3TA14100D
    [27] Li X L, Gu M, Hu S Y, et al. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes[J]. Nature Communications,2014,5:4105. doi: 10.1038/ncomms5105
    [28] Yan Z, Guo J C. High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction[J]. Nano Energy,2019,63:103845. doi: 10.1016/j.nanoen.2019.06.041
    [29] Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries[J]. Angewandte Chemie-International Edition,2008,47(9):1645-1649. doi: 10.1002/anie.200704287
    [30] Park J, Kim G P, Nam I, et al. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries[J]. Nanotechnology,2013,24(2):025602. doi: 10.1088/0957-4484/24/2/025602
    [31] Zhang R Y, Du Y J, Li D, et al. Highly reversible and large lithium storage in mesoporous Si/C nanocomposite anodes with silicon nanoparticles embedded in a carbon framework[J]. Advanced Materials,2014,26(39):6749-6755. doi: 10.1002/adma.201402813
    [32] Wu L L, Yang J, Zhou X Y, et al. Silicon nanoparticles embedded in a porous carbon matrix as a high-performance anode for lithium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(29):11381-11387. doi: 10.1039/C6TA04398D
    [33] Ma Y H, Tang H Q, Zhang Y, et al. Facile synthesis of Si-C nanocomposites with yolk-shell structure as an anode for lithium-ion batteries[J]. Journal of Alloys and Compounds,2017,704:599-606. doi: 10.1016/j.jallcom.2017.02.083
    [34] Di F, Wang N, Li L X, et al. Coral-like porous composite material of silicon and carbon synthesized by using diatomite as self-template and precursor with a good performance as anode of lithium-ions battery[J]. Journal of Alloys and Compounds,2021,854:157253. doi: 10.1016/j.jallcom.2020.157253
    [35] Cho M K, You S J, Woo J G, et al. Anomalous Si-based composite anode design by densification and coating strategies for practical applications in Li-ion batteries[J]. Composites Part B-Engineering,2021,215:108799. doi: 10.1016/j.compositesb.2021.108799
    [36] Zhou J B, Jiang Z H, Cai W L, et al. Solvothermal synthesis of a silicon hierarchical structure composed of 20 nm Si nanoparticles coated with carbon for high performance Li-ion battery anodes[J]. Dalton Transactions,2016,45(35):13667-13670. doi: 10.1039/C6DT02551J
    [37] Zhang L, Rajagopalan R, Guo H P, et al. A green and facile way to prepare granadilla-like silicon-based anode materials for Li-ion batteries[J]. Advanced Functional Materials,2016,26(3):440-446. doi: 10.1002/adfm.201503777
    [38] Kwon H J, Hwang J Y, Shin H J, et al. Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries[J]. Nano Letters,2020,20(1):625-635. doi: 10.1021/acs.nanolett.9b04395
    [39] Wang B R, Li W W, Wu T, et al. Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries[J]. Energy Storage Materials,2018,15:139-147. doi: 10.1016/j.ensm.2018.03.025
    [40] Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials,2010,9(4):353-358. doi: 10.1038/nmat2725
    [41] Liu N, Lu Z D, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology,2014,9(3):187-192. doi: 10.1038/nnano.2014.6
    [42] Zhang Y C, You Y, Xin S, et al. Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries[J]. Nano Energy,2016,25:120-127. doi: 10.1016/j.nanoen.2016.04.043
    [43] Jiang J, Zhang H, Zhu J H, et al. Putting nanoarmors on yolk-shell Si@C nanoparticles: A reliable engineering way to build better Si-based anodes for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(28):24157-24163.
    [44] Liu Q, Ji Y X, Yin X M, et al. Magnesiothermic reduction improved route to high-yield synthesis of interconnected porous Si@C networks anode of lithium ions batteries[J]. Energy Storage Materials,2022,46:384-393. doi: 10.1016/j.ensm.2021.12.017
    [45] Li H, Chen Z D, Kang Z R, et al. High-density crack-resistant Si-C microparticles for lithium ion batteries[J]. Energy Storage Materials,2023,56:40-49. doi: 10.1016/j.ensm.2022.12.045
    [46] Chen J J, Lu X Y, Sun J, et al. Si@C nanosponges application for lithium ions batteries synthesized by templated magnesiothermic route[J]. Materials Letters,2015,152:256-259. doi: 10.1016/j.matlet.2015.03.135
    [47] Shi J, Jiang X S, Sun J F, et al. A surface-engineering-assisted method to synthesize recycled silicon-based anodes with a uniform carbon shell-protective layer for lithium-ion batteries[J]. Journal of Colloid and Interface Science,2021,588:737-748. doi: 10.1016/j.jcis.2020.11.105
    [48] Liu N T, Liu J, Jia D Z, et al. Multi-core yolk-shell like mesoporous double carbon-coated silicon nanoparticles as anode materials for lithium-ion batteries[J]. Energy Storage Materials,2019,18:165-173. doi: 10.1016/j.ensm.2018.09.019
    [49] Song Y H, Zuo L, Chen S H, et al. Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries[J]. Electrochimica Acta,2015,173:588-594. doi: 10.1016/j.electacta.2015.05.111
    [50] Wang R, Wang J, Chen S, et al. In situ construction of high-performing compact Si-SiOx-CNx composites from polyaminosiloxane for Li-ion batteries[J]. ACS Applied Materials & Interfaces,2021,13(4):5008-5016.
    [51] Dai X Q, Liu H T, Liu X, et al. Silicon nanoparticles encapsulated in multifunctional crosslinked nano-silica/carbon hybrid matrix as a high-performance anode for Li-ion batteries[J]. Chemical Engineering Journal,2021,418:129468. doi: 10.1016/j.cej.2021.129468
    [52] Cao L, Huang T, Cui M Y, et al. Facile and efficient fabrication of branched Si@C anode with superior electrochemical performance in LIBs[J]. Small,2021,17(14):2005997. doi: 10.1002/smll.202005997
    [53] Du Y, Yang Z X, Yang Y J, et al. Mussel-pearl-inspired design of Si/C composite for ultrastable lithium storage anodes[J]. Journal of Alloys and Compounds,2021,872:159717. doi: 10.1016/j.jallcom.2021.159717
    [54] An W L, He P, Che Z Z, et al. Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2022,14(8):10308-10318.
    [55] Yang Z W, Qiu L, Zhang M K, et al. Carbon dioxide solid-phase embedding reaction of silicon-carbon nanoporous composites for lithium-ion batteries[J]. Chemical Engineering Journal,2021,423:130127. doi: 10.1016/j.cej.2021.130127
    [56] Huang X, Ding Y C, Li K L, et al. Spontaneous formation of the conformal carbon nanolayer coated Si nanostructures as the stable anode for lithium-ion batteries from silica nanomaterials[J]. Journal of Power Sources,2021,496:229833. doi: 10.1016/j.jpowsour.2021.229833
    [57] Wang Z G, Zheng B, Liu H, et al. One-step synthesis of nanoporous silicon @ graphitized carbon composite and its superior lithium storage properties[J]. Journal of Alloys and Compounds,2021,861:157955. doi: 10.1016/j.jallcom.2020.157955
    [58] Ma Q, Xie H W, Qu J K, et al. Tailoring the polymer-derived carbon encapsulated silicon nanoparticles for high-performance lithium-ion battery anodes[J]. ACS Applied Energy Materials,2020,3(1):268-278. doi: 10.1021/acsaem.9b01463
    [59] Xie J, Tong L, Su L W, et al. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance[J]. Journal of Power Sources,2017,342:529-536. doi: 10.1016/j.jpowsour.2016.12.094
    [60] Han C, Si H Z, Sang S B, et al. Achieving fully reversible conversion in Si anode for lithium-ion batteries by design of pomegranate-like Si@C structure[J]. Electrochimica Acta,2021,389:138736. doi: 10.1016/j.electacta.2021.138736
    [61] Zhang N, Zhang Y F, Wang T, et al. Mild strategy for generating rich void space for nano-Si/C composites to accommodate the large volume expansion during alloying/dealloying for lithium-ion batteries[J]. Journal of Alloys and Compounds,2021,857:157530. doi: 10.1016/j.jallcom.2020.157530
    [62] Huang X K, Sui X Y, Yang H N, et al. HF-free synthesis of Si/C yolk/shell anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A,2018,6(6):2593-2599. doi: 10.1039/C7TA08283E
    [63] Wang F, Wang B, Ruan T T, et al. Construction of structure-tunable Si@Void@C anode materials for lithium-ion batteries through controlling the growth kinetics of resin[J]. ACS Nano,2019,13(10):12219-12229. doi: 10.1021/acsnano.9b07241
    [64] Bin D S, Chi Z X, Li Y T, et al. Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres[J]. Journal of the American Chemical Society,2017,139(38):13492-13498. doi: 10.1021/jacs.7b07027
    [65] Wang K, Pei S E, He Z S, et al. Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes[J]. Chemical Engineering Journal,2019,356:272-281. doi: 10.1016/j.cej.2018.09.027
    [66] Majeed M K, Ma G Y, Cao Y X, et al. Metal-organic frameworks-derived mesoporous Si/SiOx@NC nanospheres as a long-lifespan anode material for lithium-ion batteries[J]. Chemistry-A European Journal,2019,25(51):11991-11997. doi: 10.1002/chem.201903043
    [67] Chen B J, Chen L, Zu L H, et al. Zero-strain high-capacity silicon/carbon anode enabled by a MOF-derived space-confined single-atom catalytic strategy for lithium-ion batteries[J]. Advanced Materials,2022,34(21):2200894. doi: 10.1002/adma.202200894
    [68] Chen B J, Zu L H, Liu Y, et al. Space-confined atomic clusters catalyze superassembly of silicon nanodots within carbon frameworks for use in lithium-ion batteries[J]. Angewandte Chemie-International Edition,2020,59(8):3137-3142. doi: 10.1002/anie.201915502
    [69] An W L, Xiang B, Fu J J, et al. Three-dimensional carbon-coating silicon nanoparticles welded on carbon nanotubes composites for high-stability lithium-ion battery anodes[J]. Applied Surface Science,2019,479:896-902. doi: 10.1016/j.apsusc.2019.02.145
    [70] Shao L Y, Shu J, Wu K Q, et al. Low pressure preparation of spherical Si@C@CNT@C anode material for lithium-ion batteries[J]. Journal of Electroanalytical Chemistry,2014,727:8-12. doi: 10.1016/j.jelechem.2014.05.031
    [71] Shin H J, Hwang J Y, Kwon H J, et al. Sustainable encapsulation strategy of silicon nanoparticles in microcarbon sphere for high-performance lithium-ion battery anode[J]. ACS Sustainable Chemistry & Engineering,2020,8(37):14150-14158.
    [72] Kumai Y, Kadoura H, Sudo E, et al. Si-C composite anode of layered polysilane (Si6H6) and sucrose for lithium ion rechargeable batteries[J]. Journal of Materials Chemistry,2011,21(32):11941-11946. doi: 10.1039/c1jm10532a
    [73] Li H, Lu C X, Zhang B P. A straightforward approach towards Si@C/graphene nanocomposite and its superior lithium storage performance[J]. Electrochimica Acta,2014,120:96-101. doi: 10.1016/j.electacta.2013.12.048
    [74] Zhang X S, Zhou L, Zhang Y, et al. A facile method to fabricate a porous Si/C composite with excellent cycling stability for use as the anode in a lithium ion battery[J]. Chemical Communications,2019,55(89):13438-13441. doi: 10.1039/C9CC06661F
    [75] Vrankovic D, Reinold L M, Riedel R, et al. Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes[J]. Journal of Materials Science,2016,51(12):6051-6061. doi: 10.1007/s10853-016-9911-x
    [76] Vrankovic D, Wissel K, Graczyk-Zajac M, et al. Novel 3D Si/C/SiOC nanocomposites: Toward electrochemically stable lithium storage in silicon[J]. Solid State Ionics,2017,302:66-71. doi: 10.1016/j.ssi.2016.11.009
    [77] Fan Z Q, Zheng S S, He S, et al. Preparation of micron Si@C anodes for lithium ion battery by recycling the lamellar submicron silicon in the kerf slurry waste from photovoltaic industry[J]. Diamond and Related Materials,2020,107:107898. doi: 10.1016/j.diamond.2020.107898
    [78] Wang B, Yuan F, Wang J, et al. Synthesis of pomegranate-structured Si/C microspheres using P123 as surfactant for high-energy lithium-ion batteries[J]. Journal of Electroanalytical Chemistry,2020,864:114102. doi: 10.1016/j.jelechem.2020.114102
    [79] Zhang W Y, Wang D H, Shi H F, et al. Industrial waste micron-sized silicon use for Si@C microspheres anodes in low-cost lithium-ion batteries[J]. Sustainable Materials and Technologies,2022,33:e00454. doi: 10.1016/j.susmat.2022.e00454
    [80] Zhou X B, Xie H W, He X, et al. Annihilating the formation of silicon carbide: Molten salt electrolysis of carbon-silica composite to prepare the carbon-silicon hybrid for lithium-ion battery anode[J]. Energy & Environmental Materials,2020,3(2):166-176.
    [81] Kazemizadeh T, Pourabdoli M. Synthesis of porous Si-C composite powder from activated raw materials[J]. Ceramics International,2022,48(19):28282-28290. doi: 10.1016/j.ceramint.2022.06.134
    [82] Li W Y, Tang Y B, Kang W P, et al. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes[J]. Small,2015,11(11):1345-1351. doi: 10.1002/smll.201402072
    [83] Shi J, Sheng L Q, Li J W, et al. Green synthesis of high-performance porous carbon coated silicon composite anode for lithium storage based on recycled silicon kerf waste[J]. Journal of Alloys and Compounds,2022,919:165854. doi: 10.1016/j.jallcom.2022.165854
    [84] Wang D K, Zhou C L, Cao B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials,2020,24:312-318. doi: 10.1016/j.ensm.2019.07.045
    [85] Zhang H T, Su H, Zhang L, et al. Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures[J]. Journal of Power Sources,2016,331:332-339. doi: 10.1016/j.jpowsour.2016.09.064
    [86] Liu S H, Jin Y G, Bae J S, et al. CO2 derived nanoporous carbons for carbon capture[J]. Microporous and Mesoporous Materials,2020,305:110356. doi: 10.1016/j.micromeso.2020.110356
    [87] Tang H, Gao P B, Liu X M, et al. Bio-derived calcite as a sustainable source for graphene as high-performance electrode material for energy storage[J]. Journal of Materials Chemistry A,2014,2(38):15734-15739. doi: 10.1039/C4TA03235G
    [88] Dong C F, Wu L Q, He Y Y, et al. Willow-leaf-like ZnSe@N-doped carbon nanoarchitecture as a stable and high-performance anode material for sodium-ion and potassium-ion batteries[J]. Small,2020,16(47):2004580. doi: 10.1002/smll.202004580
    [89] Kim H, Baek J, Son D K, et al. Hollow porous N and Co dual-doped silicon@carbon nanocube derived by ZnCo-bimetallic metal-organic framework toward advanced lithium-ion battery anodes[J]. ACS Applied Materials & Interfaces,2022,14:45458-45475.
    [90] Shao R, Zhu F, Cao Z J, et al. Heteroatom-doped carbon networks enabling robust and flexible silicon anodes for high energy Li-ion batteries[J]. Journal of Materials Chemistry A,2020,8(35):18338-18347. doi: 10.1039/D0TA06647H
    [91] Cai W P, Zhang Y Y, Jia Y T, et al. Flexible heteroatom-doped porous carbon nanofiber cages for electrode scaffolds[J]. Carbon Energy,2020,2(3):472-481. doi: 10.1002/cey2.46
    [92] Liang H J, Gu Z Y, Zheng X Y, et al. Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries[J]. Journal of Energy Chemistry,2021,59:589-598. doi: 10.1016/j.jechem.2020.11.039
    [93] Han X Y, Meng X D, Chen S, et al. P-doping a porous carbon host promotes the lithium storage performance of red phosphorus[J]. ACS Applied Materials & Interfaces,2023,15(9):11713-11722.
    [94] Zhou J, Lu Y, Yang L S, et al. Sustainable silicon anodes facilitated via a double-layer interface engineering: Inner SiOx combined with outer nitrogen and boron co-doped carbon[J]. Carbon Energy,2022,4(3):399-410. doi: 10.1002/cey2.176
    [95] An W L, Gao B A, Mei S X, et al. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes[J]. Nature Communications,2019,10:1447. doi: 10.1038/s41467-019-09510-5
    [96] Pei S E, Guo J F, He Z S, et al. Porous Si-Cu3Si-Cu microsphere@C core-shell composites with enhanced electrochemical lithium storage[J]. Chemistry-A European Journal,2020,26(27):6006-6016. doi: 10.1002/chem.201904995
    [97] Liao L X, Ma T, Xiao Y, et al. Enhanced reversibility and cyclic stability of biomass-derived silicon/carbon anode material for lithium-ion battery[J]. Journal of Alloys and Compounds,2021,873:159700. doi: 10.1016/j.jallcom.2021.159700
    [98] Xiang X L, Pan P, Li P D, et al. Preparation of a N-doped Si/Cu/C anode for high-performance lithium-ion batteries[J]. Sustainable Energy & Fuels,2023,7(4):1041-1050.
    [99] Li Q G, Wang Y H, Gao X Y, et al. Enhancement of ZIF-8 derived N-doped carbon/silicon composites for anode in lithium ions batteries[J]. Journal of Alloys and Compounds,2021,872:159712. doi: 10.1016/j.jallcom.2021.159712
    [100] Niu X X, Wang C D, Zhang W Y, et al. A bimetallic ZIFs-triggered hierarchical carbon structure for stabilized silicon anode[J]. Electrochimica Acta,2022,403:139671. doi: 10.1016/j.electacta.2021.139671
    [101] Xu H R, Zhao L L, Liu X M, et al. Metal-organic-framework derived core-shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries[J]. Advanced Functional Materials,2020,30(50):2006188. doi: 10.1002/adfm.202006188
    [102] Lu J J, Wang D, Liu J H, et al. Hollow double-layer carbon nanocage confined Si nanoparticles for high performance lithium-ion batteries[J]. Nanoscale Advances,2020,2(8):3222-3230. doi: 10.1039/D0NA00297F
    [103] Yan Z L, Liu J Y, Lin Y F, et al. Metal-organic frameworks-derived CoMOF-D@Si@C core-shell structure for high-performance lithium-ion battery anode[J]. Electrochimica Acta,2021,390:138814. doi: 10.1016/j.electacta.2021.138814
    [104] Fan Z Q, Wang Y T, Zheng S S, et al. A submicron Si@C core-shell intertwined with carbon nanowires and graphene nanosheet as a high-performance anode material for lithium ion battery[J]. Energy Storage Materials,2021,39:1-10. doi: 10.1016/j.ensm.2021.04.005
    [105] Li Y Z, Yan K, Lee H W, et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes[J]. Nature Energy,2016,1:15029. doi: 10.1038/nenergy.2015.29
    [106] An Y L, Tian Y, Liu C K, et al. One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li ion and MXene-based Li metal batteries[J]. ACS Nano,2022,16(3):4560-4577. doi: 10.1021/acsnano.1c11098
    [107] Han J H, He J, Zou Q Y, et al. High-capacity potassium ion storage mechanisms in a soft carbon revealed by solid-state NMR spectroscopy[J]. Rare Metals,2022,41(11):3752-3761. doi: 10.1007/s12598-022-02063-5
    [108] Meng F J, Zhang X, Qiao Z J, et al. Study on the effects of carbon coating on lithium-storage kinetics for soft carbon[J]. Energy Storage Science and Technology,2022,11(11):3548-3557.
    [109] Chae S, Xu Y B, Yi R, et al. A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon[J]. Advanced Materials,2021,33(40):2103095. doi: 10.1002/adma.202103095
    [110] Qi Z Y, Dai L Q, Wang Z F, et al. Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery[J]. New Carbon Materials,2022,37(1):245-255. doi: 10.1016/S1872-5805(22)60580-8
    [111] Mochida I, Korai Y, Ku C H, et al. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon,2000,38(2):305-328. doi: 10.1016/S0008-6223(99)00176-1
    [112] Ko T H, Kuo W S, Chang Y H. Microstructural changes of phenolic resin during pyrolysis[J]. Journal of Applied Polymer Science,2001,81(5):1084-1089. doi: 10.1002/app.1530
    [113] Chen J P, Wang Z F, Yi Z L, et al. SiC whiskers nucleated on rGO and its potential role in thermal conductivity and electronic insulation[J]. Chemical Engineering Journal,2021,423:130181. doi: 10.1016/j.cej.2021.130181
    [114] Lai Q, Zhu S F, Luo X P, et al. Ultraviolet-visible spectroscopy of graphene oxides[J]. AIP Advances,2012,2(3):032146. doi: 10.1063/1.4747817
    [115] Bissada K K, Tan J Q, Szymczyk E, et al. Group-type characterization of crude oil and bitumen. Part I: Enhanced separation and quantification of saturates, aromatics, resins and asphaltenes (SARA)[J]. Organic Geochemistry,2016,95:21-28. doi: 10.1016/j.orggeochem.2016.02.007
    [116] Xie J, Sun L, Liu Y X, et al. SiOx/C-Ag nanosheets derived from Zintl phase CaSi2 via a facile redox reaction for high performance lithium storage[J]. Nano Research,2022,15(1):395-400. doi: 10.1007/s12274-021-3491-z
    [117] Ko M, Chae S, Ma J, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy,2016,1:16113. doi: 10.1038/nenergy.2016.113
    [118] Karuppiah S, Keller C, Kumar P, et al. A Scalable Silicon Nanowires-Grown-On-Graphite Composite for High-Energy Lithium Batteries[J]. ACS Nano,2020,14(9):12006-12015. doi: 10.1021/acsnano.0c05198
    [119] Zhu S J, Lin Y F, Yan Z L, et al. Novel design of uniform Si@graphite@C composite as high-performance Li-ion battery anodes[J]. Electrochimica Acta,2021,377:138092. doi: 10.1016/j.electacta.2021.138092
    [120] Xiao C M, He P, Ren J G, et al. Walnut-structure Si-G/C materials with high coulombic efficiency for long-life lithium ion batteries[J]. RSC Advances,2018,8(48):27580-27586. doi: 10.1039/C8RA04804E
    [121] Jeong S, Li X L, Zheng J M, et al. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries[J]. Journal of Power Sources,2016,329:323-329. doi: 10.1016/j.jpowsour.2016.08.089
    [122] Gan L, Guo H J, Wang Z X, et al. A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries[J]. Electrochimica Acta,2013,104:117-123. doi: 10.1016/j.electacta.2013.04.083
    [123] Li M, Hou X H, Sha Y J, et al. Facile spray-drying/pyrolysis synthesis of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries[J]. Journal of Power Sources,2014,248:721-728. doi: 10.1016/j.jpowsour.2013.10.012
    [124] Wang C S, Wu G T, Zhang X B, et al. Lithium insertion in carbon-silicon composite materials produced by mechanical milling[J]. Journal of the Electrochemical Society,1998,145(8):2751-2758. doi: 10.1149/1.1838709
    [125] Dimov N, Kugino S, Yoshio A. Mixed silicon-graphite composites as anode material for lithium ion batteries influence of preparation conditions on the properties of the material[J]. Journal of Power Sources,2004,136(1):108-114. doi: 10.1016/j.jpowsour.2004.05.012
    [126] Xu C J, Shen L, Zhang W J, et al. Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes[J]. Energy Storage Materials,2023,56:319-330. doi: 10.1016/j.ensm.2023.01.025
    [127] Yan Z L, Yi S, Li X D, et al. A scalable silicon/graphite anode with high silicon content for high-energy lithium-ion batteries[J]. Materials Today Energy,2023,31:101225. doi: 10.1016/j.mtener.2022.101225
    [128] Kim S Y, Lee J, Kim B H, et al. Facile synthesis of carbon-coated silicon/graphite spherical composites for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8(19):12109-12117.
    [129] Rattes A L R, Oliveira W P. Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles[J]. Powder Technology,2007,171(1):7-14. doi: 10.1016/j.powtec.2006.09.007
    [130] Zhou R, Guo H J, Yang Y, et al. N-doped carbon layer derived from polydopamine to improve the electrochemical performance of spray-dried Si/graphite composite anode material for lithium ion batteries[J]. Journal of Alloys and Compounds,2016,689:130-137. doi: 10.1016/j.jallcom.2016.07.315
    [131] Yang W T, Ying H J, Zhang S L, et al. Electrochemical performance enhancement of porous Si lithium-ion battery anode by integrating with optimized carbonaceous materials[J]. Electrochimica Acta,2020,337:135687. doi: 10.1016/j.electacta.2020.135687
    [132] Li J Y, Li G, Zhang J, et al. Rational design of robust Si/C microspheres for high-tap-density anode materials[J]. ACS Applied Materials & Interfaces,2019,11(4):4057-4064.
    [133] Gu M, Li Y, Li X L, et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix[J]. ACS Nano,2012,6(9):8439-8447. doi: 10.1021/nn303312m
    [134] Yi R, Dai F, Gordin M L, et al. Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes[J]. Advanced Energy Materials,2013,3(11):1507-1515. doi: 10.1002/aenm.201300496
    [135] Xu Z-L, Cao K, Abouali S, et al. Study of lithiation mechanisms of high performance carbon-coated Si anodes by in-situ microscopy[J]. Energy Storage Materials,2016,3:45-54. doi: 10.1016/j.ensm.2016.01.003
    [136] Zhou C Y, Gong X Z, Feng Y K, et al. Constructing an artificial boundary to regulate solid electrolyte interface formation and synergistically enhance stability of nano-Si anodes[J]. Journal of Colloid and Interface Science,2022,619:158-167. doi: 10.1016/j.jcis.2022.03.111
    [137] Xu Z Y, Zheng E, Xiao Z W, et al. Photo-initiated in situ synthesis of polypyrrole Fe-coated porous silicon microspheres for high-performance lithium-ion battery anodes[J]. Chemical Engineering Journal,2023,459:141543. doi: 10.1016/j.cej.2023.141543
    [138] Wu H, Yu G H, Pan L J, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications,2013,4:1943. doi: 10.1038/ncomms2941
    [139] Pan S Y, Han J W, Wang Y Q, et al. Integrating SEI into layered conductive polymer coatings for ultrastable silicon anodes[J]. Advanced Materials,2022,34(31):2203617. doi: 10.1002/adma.202203617
    [140] Wang W, Wang Y, Huang W, et al. In situ developed Si@polymethyl methacrylate capsule as a Li-ion battery anode with high-rate and long cycle-life[J]. ACS Applied Materials & Interfaces,2021,13(5):6919-6929.
    [141] Wang Q Y, Zhu M, Chen G R, et al. High-performance microsized Si anodes for lithium-ion batteries: Insights into the polymer configuration conversion mechanism[J]. Advanced Materials,2022,34(16):2109658. doi: 10.1002/adma.202109658
    [142] Du F H, Li B, Fu W, et al. Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability[J]. Advanced Materials,2014,26(35):6145-6150. doi: 10.1002/adma.201401937
    [143] Lv Y Y, Shang M W, Chen X, et al. Largely improved battery performance using a microsized silicon skeleton caged by polypyrrole as anode[J]. ACS Nano,2019,13(10):12032-12041. doi: 10.1021/acsnano.9b06301
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  21
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-15
  • 录用日期:  2024-06-25
  • 修回日期:  2024-06-24
  • 网络出版日期:  2024-07-01

目录

    /

    返回文章
    返回