留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低阶煤基炭材料研究进展

宋文革 曾红久 王斌 黄显虹 李晓明 孙国华

宋文革, 曾红久, 王斌, 黄显虹, 李晓明, 孙国华. 低阶煤基炭材料研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60872-3
引用本文: 宋文革, 曾红久, 王斌, 黄显虹, 李晓明, 孙国华. 低阶煤基炭材料研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60872-3
SONG Wen-ge, ZENG Hong-jiu, WANG Bin, HUANG Xian-hong, LI Xiao-ming, SUN Guo-hua. Research progress on low-rank coal-based carbon materials. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60872-3
Citation: SONG Wen-ge, ZENG Hong-jiu, WANG Bin, HUANG Xian-hong, LI Xiao-ming, SUN Guo-hua. Research progress on low-rank coal-based carbon materials. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60872-3

低阶煤基炭材料研究进展

doi: 10.1016/S1872-5805(24)60872-3
基金项目: 感谢国家自然科学基金资助项目(22379157,22179139)、山西省自然科学基金(20210302124101)、山西省重点研发计划项目(202202040201007)和中国神华能源股份有限公司神东煤炭分公司科技创新项目(E210100265)
详细信息
    作者简介:

    宋文革,教授级高级工程师. E-mail:10026728@ceic.com

    通讯作者:

    李晓明,高级工程师. Email:lixiaoiming@sxicc.ac.cn

    孙国华,研究员. Email:Sunguohua_1@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Research progress on low-rank coal-based carbon materials

Funds: National Natural Science Foundation of China (22379157,22179139), Natural Science Foundation of Shanxi (20210302124101), Key Research and Development (R&D) Projects of Shanxi Province (202202040201007) and Technological innovation projects of Shendong Coal Branch of China Shenhua Energy Co., Ltd (E210100265)
More Information
  • 摘要: 低阶煤由于具有储量丰富、碳含量高、芳烃结构易调整等特点,已被广泛用于制备高性能炭材料的理想前驱体。为进一步实现低阶煤高值化利用与高性能煤基炭材料的可控制备,本文综述了低阶煤在炭材料制备领域的最新研究进展。首先全面分析了低阶煤的物理化学特性,并通过代表性的文献阐述了低阶煤及其衍生物在制备储能炭材料、吸附活性炭及纳米炭材料的方法和改性策略,及煤基炭材料的应用性能。其次,本文深入解析了低阶煤中灰分、伴生杂原子的存在对煤基炭材料应用性能的潜在影响,为高性能煤基炭材料的工艺优化与可控制备提交依据。最后,本文对低阶煤基炭材料的未来所面临的挑战与机遇进行了展望,强调在新型制备技术探索、材料性能深度挖掘以及能源存储、环境净化、催化反应等前沿领域的应用创新的重要性。综上所述,本文综述不仅是对当前研究成果的全面回顾,更是对未来发展趋势的深刻展望,有望为低阶煤基炭材料的结构设计与应用性能优化提供指导。
  • 图  1  (a)不同变质程度煤的分子结构[1],(b)煤中伴生石墨层[15]

    Figure  1.  (a) Schematic representation of various rank coals and their structural moiety[1]. (b) Associated graphite in coal[15]. Reprinted with permission

    图  2  低阶煤基炭材料

    Figure  2.  Carbon materials from low rank coal

    图  3  低阶煤基储能炭材料技术路线

    Figure  3.  Technical route of low-rank coal-based energy storage carbon material

    图  4  (a)各种电容炭在 2 mol/L H2SO4 水溶液和(b)1 mol/L Et4NBF4/乙腈中的比电容随表面积的变化,比表面积通过 BET 方程估算[40]和(c)用不同的碳前体和模板合成的纳米结构碳在水和有机介质中的电容值与通过 CO2 吸附确定的微孔体积[41]

    Figure  4.  Variation of the specific capacitance of a large variety of carbons in 2 mol/L aqueous H2SO4 (a) and 1 mol/L Et4NBF4/acetonitrile (b) with the specific surface area estimated by the BET equation[40]. (c) Capacitance values in aqueous and organic media of the nanostructured carbons synthesized with different carbon precursors and templates vs. their micropore volume determined by CO2 adsorption[41]. Reprinted with permission

    图  5  煤基多孔炭孔隙发展机制示意图[46]

    Figure  5.  A schematic illustration of the porosity development mechanism by various strategies[46]. Reprinted with permission

    图  6  (a) 以褐煤为原料生产氮掺杂电容炭的路线。 (b)孔体积分析。 (c)各种N掺杂的原子百分比。 (d)润湿性分析。 (e) 功率密度与对应能量密度的对数关系图[12]

    Figure  6.  (a) Structural evolution from coal to MACN (N-doped modified activated carbon). (b) Pore volume distribution and ratio analysis. (c) Atomic percentage distribution for different N doping. (d) Contact angle of MACN and MAC electrodes. (e) Ragone plot for MACN symmetric cell [12]. Reprinted with permission

    图  7  硬碳的微观结构与储锂/储钠性能[84,85]

    Figure  7.  (a) Sodium storage mechanism in hard carbon[84]. (b) Theoretical energy cost for Na (red curve) and Li (blue curve) ions insertion into carbon as a function of carbon interlayer distance. The inset illustrates the mechanism of Na and Li-ions insertion into carbon[85]. Reprinted with permission

    图  8  (a)不同炭材料(石墨、软碳、硬碳和石墨烯)的代表性XRD图谱(Cu Ka源)、(b)微观结构示意图和(c)储钠时的比容量-电压曲线[86]

    Figure  8.  (a) Typical X-ray diffraction patterns (Cu K-alpha source) indexed in 2H graphite referential. (b) graphical representation of the fine structure, and (c) typical voltage–charge profiles at second cycle in sodium half cell of graphite (grey), soft carbon (green), hard carbon (black), and graphene (reduced graphite oxide, orange). Graphite and rGO voltage–charge profiles redrawn from the digitalization of previously reported data[86]. Reprinted with permission

    图  9  (a)破碎活性炭生产工艺流程。(b)柱状活性炭生产工艺流程。(c)压块活性炭生产工艺流程和(d)球状活性炭生产工艺流程

    Figure  9.  Schematic illustration of (a) Production process of crushed activated carbon. (b) Production process of columnar activated carbon. (c) Production process of briquetted activated carbon and (d) Production process of spherical activated carbon

    表  1  低阶煤基电容炭制备方法及性能

    Table  1.   Preparation method and performance of low-rank coal-based capacitor carbon

    Sample Synthetic method surface
    area/(m2/g)
    Total pore
    volume/(cm3/g)
    Electrolyte Potential/V Capacitance/(F/g) cycling stability Ref.
    Coal-derived
    carbon
    Pre carbonization,
    KOH activation
    2456 1.4 1 M TEABF4-AN 0~2.5 146 at 0.5 A/g 10000次@90% at 5 A/g [12]
    Coal-derived
    carbon
    FeCl3 and CO2
    activation’
    1872 1.04 6 M KOH −1~0 211 at 1 A/g 10000次@97% at 5 A/g [46]
    Coal-derived
    carbon
    CO2 activation 1773 1.11 6 M KOH −1~0 141 at 0.5 A/g 5000次@100% at 5 A/g [48]
    Coal-derived
    carbon
    C6H5K3O7 and C3N4
    asco-templates
    1735 6 M KOH −1~0 302 at 1 A/g 10000次@100% at 5 A/g [49]
    Coal-derived
    carbon
    K2Al2Si3O10·2H2O
    as self-template
    3851 2.47 6 M KOH 0~1 463 at 0.1 A/g 6000次@92.7% at 5 A/g [50]
    Coal-derived
    carbon
    KOH solution impregnation
    and activation
    934 0.521 6 M KOH −1~0 125 at 1 A/g 4000次@76% at 5 A/g [69]
    Coal-derived
    carbon
    Deashed high sulfur
    coal as raw material
    934 0.521 6 M KOH −1~0 344 at 1 A/g 5000次@89.1% at 1 A/g [70]
    Coal-derived
    carbon
    KOH activation 1139 0.587 6 M KOH −1~0 161 at 0.5 A/g 500次@97.8% at 5 A/g [74]
    Note: M: mol/L
    下载: 导出CSV
  • [1] Bora M, Bhattacharjya D, Saikia B K. Coal-derived activated carbon for electrochemical energy storage: Status on supercapacitor, li-ion battery, and Li–S battery applications[J]. Energy & Fuels,2021,35(22):18285-18307.
    [2] Tian Q Q, Li X M, Xie L J, et al. Insights into the carbonization mechanism of bituminous coal-derived carbon materials for lithium-ion and sodium-ion batteries[J]. New Carbon Materials,2023,38(5):939-953. doi: 10.1016/S1872-5805(23)60759-0
    [3] Che X G, Jin J, Zhang Y X, et al. Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors[J]. New Carbon Materials,2023,38(6):1050-1058. doi: 10.1016/S1872-5805(23)60752-8
    [4] Barma S D. Ultrasonic-assisted coal beneficiation: A review[J]. Ultrasonics Sonochemistry,2019,50:15-35. doi: 10.1016/j.ultsonch.2018.08.016
    [5] Zhao H Y, Wang L X, Jia D Z, et al. Coal based activated carbon nanofibers prepared by electrospinning[J]. Journal of Materials Chemistry A, Materials for energy and sustainability,2014,2(24):9338-9344.
    [6] Zhang T, Lu Z J, Pan H R, et al. Coal-based carbon nanosheets contained carbon microfibers modified with grown carbon nanotubes as efficient air electrode material for rechargeable zinc-air batteries[J]. Journal of Colloid and Interface Science,2024,671:589-600. doi: 10.1016/j.jcis.2024.05.191
    [7] Pang L S. K. Fullerenes from brown (lignite) coal[J]. Fuel Processing Technology,1993,34(2):147-155. doi: 10.1016/0378-3820(93)90097-N
    [8] He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. Journal of materials chemistry. A, Materials for energy and sustainability,2014,2(46):19633-19640.
    [9] Li C, Wang Y W, Xiao N, et al. Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction[J]. Carbon,2019,151:46-52. doi: 10.1016/j.carbon.2019.05.042
    [10] Lv Y, Ding L L, Wu X Y, et al. Coal-based 3D hierarchical porous carbon aerogels for high performance and super-long life supercapacitors[J]. Scientific Reports,2020,10(1):7022. doi: 10.1038/s41598-020-64020-5
    [11] Yang N N, Gao X Y, Shen Y F, et al. Effects of coal characteristics on the structure and performance of coal-based carbon foam prepared by self-foaming technique under atmospheric pressure[J]. Journal of Analytical and Applied Pyrolysis,2022,164:105516. doi: 10.1016/j.jaap.2022.105516
    [12] Dong D, Zhang Y S, Xiao Y, et al. High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials[J]. Journal of Colloid and Interface Science,2020,580:77-87. doi: 10.1016/j.jcis.2020.07.018
    [13] Li H Q, He X J, Wu T T, et al. Synthesis, modification strategies and applications of coal-based carbon materials[J]. Fuel Processing Technology,2022,230:107203. doi: 10.1016/j.fuproc.2022.107203
    [14] Guo M X, Guo J X, Tong F L, et al. Hierarchical porous carbon spheres constructed from coal as electrode materials for high performance supercapacitors[J]. RSC Advances,2017,7(72):45363-45368. doi: 10.1039/C7RA08026C
    [15] Li K, Liu Q F, Cheng H F, et al. Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy and HRTEM [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2021,249:119286-119295.
    [16] Sondreal E A, Wiltsee G A. Low-rank coal: Its present and future role in the united states[J]. Annual Review of Energy,1984(9):473-499.
    [17] Chong J K, Cheng X, Xiao L H, et al. Fine characterization of the macromolecular structure of shanxi low-rank coal[J]. Journal of Molecular Structure,2023,1273:134359. doi: 10.1016/j.molstruc.2022.134359
    [18] Qin X Z, Yang T, Liu Z Y, et al. Molecular structure, bond cleavage and their relation of four low rank coals[J]. Fuel Processing Technology,2022,236:107391. doi: 10.1016/j.fuproc.2022.107391
    [19] Mathews J P, Chaffee A L. The molecular representations of coal – a review[J]. Fuel,2012,96:1-14. doi: 10.1016/j.fuel.2011.11.025
    [20] Dong Y Q, Lin J P, Chen Y M, et al. Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals[J]. Nanoscale,2014,6(13):7410-7415. doi: 10.1039/C4NR01482K
    [21] Burgess-Clifford C E, Narayanan D L, Van E D T, et al. The effect of calcination on reactive milling of anthracite as potential precursor for graphite production[J]. Fuel Processing Technology,2009,90(12):1515-1523. doi: 10.1016/j.fuproc.2009.07.017
    [22] Hu S L, Wei Z J, Chang Q, et al. A facile and green method towards coal-based fluorescent carbon dots with photocatalytic activity[J]. Applied Surface Science,2016,378:402-407. doi: 10.1016/j.apsusc.2016.04.038
    [23] Li Y D, Chen X Q, Zeng Z H, et al. Coal-based electrodes for energy storage systems: Development, challenges and prospects[J]. ACS Applied Energy Materials,2022,5(6):7874-7888. doi: 10.1021/acsaem.2c01423
    [24] Lou Z J, Wang H, Wu D Y, et al. Microcrystalline regulation of bituminous coal derived hard carbon by pre-oxidation strategy for improved sodium-ion storage[J]. Fuel,2022,310:122072. doi: 10.1016/j.fuel.2021.122072
    [25] Li S J, Zhang L M, Zhao W Q, et al. Designing interfacial chemical bonds towards advanced metal-based energy-storage/conversion materials[J]. Energy Storage Materials,2020,32:477-496. doi: 10.1016/j.ensm.2020.07.023
    [26] Zeng Z H, Dong Y, Yuan S H, et al. Natural mineral compounds in energy-storage systems: Development, challenges, prospects[J]. Energy Storage Materials,2022,45:442-464. doi: 10.1016/j.ensm.2021.11.051
    [27] Brezesinski T, Wang J, Tolbert S H, et al. Ordered mesoporous a-moo3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors[J]. Nature Materials,2010(9):146-151.
    [28] Chen S H, Qiu L, Cheng H M. Carbon-based fibers for advanced electrochemical energy storage devices[J]. Chemical reviews,2020,120(5):2811-2878. doi: 10.1021/acs.chemrev.9b00466
    [29] Zhong M Z, Zhang M, Li X F. Carbon nanomaterials and their composites for supercapacitors[J]. Carbon Energy,2022,4(5):950-985. doi: 10.1002/cey2.219
    [30] Miller E E, Hua Y, Tezel F. H. Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors[J]. Journal of Energy Storage,2018,20:30-40. doi: 10.1016/j.est.2018.08.009
    [31] Hussain I, Lamiel C, Ahmad M et al. High entropy alloys as electrode material for supercapacitors: a review[J]. Journal of Energy Storage,2021,44:103405. doi: 10.1016/j.est.2021.103405
    [32] Wang Z H, Cao Q F, Guo F J, et al. Preparation and electrochemical properties of low-temperature activated porous carbon from coal tar pitch[J]. Diamond and Related Materials,2023,135:109855. doi: 10.1016/j.diamond.2023.109855
    [33] Dong D, Xiao Y. Recent progress and challenges in coal-derived porous carbon for supercapacitor applications[J]. Chemical Engineering Journal,2023,470:144441. doi: 10.1016/j.cej.2023.144441
    [34] Yue X M, An Z Y, Xue S F. Construction of coal-based activated carbons by physical-chemical activation for high performance supercapacitor electrodes[J]. Annual International Pittsburgh Coal Conference, 2018, 746.
    [35] Xing B L, Guo H, Chen L J, et al. Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors[J]. Fuel Processing Technology,2015,138:734-742. doi: 10.1016/j.fuproc.2015.07.017
    [36] Zhang F M, Shao Q Z, Zhang B Q, et al. Effect of surface area on electrochemical performance of coal-based capacitive carbon[J]. Clean Coal Technology,2021,27(1):254-262.
    [37] Ania C O, Pernak J, Stefaniak F, et al. Polarization-induced distortion of ions in the pores of carbon electrodes for electrochemical capacitors[J]. Carbon,2009,47(14):3158-3166. doi: 10.1016/j.carbon.2009.06.054
    [38] Cottineau T, Toupin M, Delahaye T, et al. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors[J]. Applied physics. A, Materials science & processing, 2006, 82(4): 599-606.
    [39] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science,2006,313(5794):1760-1763. doi: 10.1126/science.1132195
    [40] Belén L, Loreto S, Laura G, et al. Capacitance and surface of carbons in supercapacitors[J]. Carbon,2017,122:434-445. doi: 10.1016/j.carbon.2017.06.083
    [41] Vix-Guterl C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon,2005,43(6):1293-1302 doi: 10.1016/j.carbon.2004.12.028
    [42] Nishihara H, Yang Q H, Hou P X, et al. A possible buckybowl-like structure of zeolite templated carbon[J]. Carbon,2009,47(5):1220-1230. doi: 10.1016/j.carbon.2008.12.040
    [43] Dyatkin B, Osti N C, Zhang Y, et al. Ionic liquid structure, dynamics, and electrosorption in carbon electrodes with bimodal pores and heterogeneous surfaces[J]. Carbon,2018,129:104-118. doi: 10.1016/j.carbon.2017.12.001
    [44] Ghosh A, Lee Y H. Carbon-based electrochemical capacitors[J]. Chem Sus Chem,2012,5(3):480-499. doi: 10.1002/cssc.201100645
    [45] Chen P, Tang Y K, Gao Y, et al. Design and structure optimization of coal-based hierarchical porous carbon by molten salt method for high-performance supercapacitors[J]. Journal of Power Sources,2023,580:233334. doi: 10.1016/j.jpowsour.2023.233334
    [46] Wang L J, Sun F, Gao J H, et al. A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials[J]. Journal of the Taiwan Institute of Chemical Engineers,2018,91:588-596. doi: 10.1016/j.jtice.2018.06.014
    [47] Liu M, Qin Z H, Yang X Q, et al. Fabricating controllable hierarchical pores on smooth carbon sheet for synthesis of supercapacitor materials[J]. Vacuum,2019,168:108806. doi: 10.1016/j.vacuum.2019.108806
    [48] Wang L J, Sun F, Hao F, et al. A green trace K2CO3 induced catalytic activation strategy for developing coal-converted activated carbon as advanced candidate for CO2 adsorption and supercapacitors[J]. Chemical Engineering Journal,2020,383:123205. doi: 10.1016/j.cej.2019.123205
    [49] Cai L M, Zhang Y Z, Ma R, et al. Nitrogen-doped hierarchical porous carbon derived from coal for high-performance supercapacitor[J]. Molecules,2023,28(9):3660. doi: 10.3390/molecules28093660
    [50] Wang X, Qin Z H, Yang X Q, et al. Self-template synthesis of hierarchical porous carbon for supercapacitors based on bituminous coal[J]. International Journal of Energy Research,2021,45(2):2116-2125. doi: 10.1002/er.5905
    [51] Du Q L, Zheng M B, Zhang L F, et al. Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors[J]. Electrochimica Acta,2010,55(12):3897-3903. doi: 10.1016/j.electacta.2010.01.089
    [52] Fan L Z, Hu Y S, Maier J, et al. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support[J]. Advanced Functional Materials,2007,17(16):3083-3087. doi: 10.1002/adfm.200700518
    [53] Fischer A E, Pettigrew K A, Rolison D R, et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors[J]. Nano letters,2007,7(2):281-286. doi: 10.1021/nl062263i
    [54] Zheng Y F, Chen K M, Jiang K P, et al. Progress of synthetic strategies and properties of heteroatoms-doped (N, P, S, O) carbon materials for supercapacitors[J]. Journal of Energy Storage,2022,56:105995. doi: 10.1016/j.est.2022.105995
    [55] Khalafallah D, Quan X Y, Ouyang C, et al. Heteroatoms doped porous carbon derived from waste potato peel for supercapacitors[J]. Renewable Energy,2021,170:60-71. doi: 10.1016/j.renene.2021.01.077
    [56] Hegazy M A, Mohammedy M M, Dhmees A S, et al. Phosphorous and sulfur doped asphaltene derived activated carbon for supercapacitor application[J]. Journal of Energy Storage,2021,44:103331. doi: 10.1016/j.est.2021.103331
    [57] Luo L C, Lan Y L, Zhang Q Q, et al. Enhanced capacitance of phosphorus, nitrogen, and oxygen tri-doped balsa wood-based porous carbon for supercapacitors[J]. Journal of Energy Storage,2023,58:106339. doi: 10.1016/j.est.2022.106339
    [58] Lin G F, Wang Q, Yang X, et al. Preparation of phosphorus-doped porous carbon for high performance supercapacitors by one-step carbonization[J]. RSC Advances,2020,10(30):17768-17776. doi: 10.1039/D0RA02398A
    [59] Liu W, Zhang S K, Dar S U, et al. Polyphosphazene-derived heteroatoms-doped carbon materials for supercapacitor electrodes[J]. Carbon,2018,129:420-427. doi: 10.1016/j.carbon.2017.12.016
    [60] Tian K S, Wang J Y, Cao L, et al. Single-site pyrrolic-nitrogen-doped sp2-hybridized carbon materials and their pseudocapacitance[J]. Nature Communications,2020,11(1):3884. doi: 10.1038/s41467-020-17727-y
    [61] Gu J W, Wang H F, Li S, et al. Tuning pyridinic-n and graphitic-n doping with 4, 4′-bipyridine in honeycomb-like porous carbon and distinct electrochemical roles in aqueous and ionic liquid gel electrolytes for symmetric supercapacitors[J]. Journal of Colloid and Interface Science,2023,635:254-264. doi: 10.1016/j.jcis.2022.12.127
    [62] Huang G X, Kang W W, Xing B L, et al. Oxygen-rich and hierarchical porous carbons prepared from coal based humic acid for supercapacitor electrodes[J]. Fuel Processing Technology,2016,142:1-5. doi: 10.1016/j.fuproc.2015.09.025
    [63] Zhang X Y, Sun B K, Fan X, et al. Hierarchical porous carbon derived from coal and biomass for high performance supercapacitors[J]. Fuel,2022,311:122552. doi: 10.1016/j.fuel.2021.122552
    [64] Jurewicz K, Pietrzak R, Nowicki P, et al. Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea[J]. Electrochimica Acta,2008,53(16):5469-5475. doi: 10.1016/j.electacta.2008.02.093
    [65] Zhang C X, Long D H, Xing B L, et al. The superior electrochemical performance of oxygen-rich activated carbons prepared from bituminous coal[J]. Electrochemistry Communications,2008,10(11):1809-1811. doi: 10.1016/j.elecom.2008.09.019
    [66] Feng Y Y, Huang H B, Yang W, et al. Sulfur-doped microporous carbons developed from coal for enhanced capacitive performances of supercapacitor electrodes[J]. Integrated Ferroelectrics,2018,188(1):44-56. doi: 10.1080/10584587.2018.1454763
    [67] Lu Q, Xu Y Y, Mu S J, et al. The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes[J]. New Carbon Materials,2017,32(5):442-450. doi: 10.1016/S1872-5805(17)60133-1
    [68] Lv Y, Chen J J, Jia W, et al. N/S co-doped coal-based porous carbon spheres as electrode materials for high performance supercapacitors[J]. RSC Advances,2020,10(19):11033-11038. doi: 10.1039/D0RA00458H
    [69] Oglou R C, Gokce Y, Yagmur E, et al. Highly stable megalopolis lignite based n and s self-doped hierarchically porous activated carbons for high performance supercapacitors and ash content effects on performance[J]. Journal of Energy Storage,2022,46:103817. doi: 10.1016/j.est.2021.103817
    [70] Yaglikci S, Gokce Y, Yagmur E, et al. Does high sulphur coal have the potential to produce high performance - low cost supercapacitors?[J]. Surfaces and Interfaces,2021,22:100899. doi: 10.1016/j.surfin.2020.100899
    [71] Yan S X, Wang Q, Luo S H, et al. Coal-based hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries[J]. Journal of Power Sources,2020,461:228151. doi: 10.1016/j.jpowsour.2020.228151
    [72] Fan L H, Wang X L, Hou C X, et al. Research on performance comparison of lignite-activated carbon and hypercoal-activated carbon[J]. Journal of Functional Materials,2017,48(1):1244-1248.
    [73] Xiong S X, He Y, Wang X Q, et al. Ultralow ash semicoal powder obtained by two-step acid treatment and its supercapacitive properties[J]. Energy & Fuels,2020,34(6):7591-7599.
    [74] Huang S S, Zhao X Y, Xie F M, et al. Preparation of hypercoal-based activated carbons for electric double layer capacitor[J]. Journal of Fuel Chemistry and Technology,2014,42(05):539-544.
    [75] Chen X Y, Liu C Y, Fang Y J, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy,2022,4(6):1133-1150. doi: 10.1002/cey2.196
    [76] Chu Y, Zhang J, Zhang Y B, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective[J]. Advanced Materials,2023,35(31):2212186. doi: 10.1002/adma.202212186
    [77] Xie L J, Tang C, Bi Z H, et al. Hard carbon anodes for next-generation li-ion batteries: Review and perspective[J]. Advanced Energy Materials,2021,11(38):2101650. doi: 10.1002/aenm.202101650
    [78] Anji R M, Helen M, Groß A, et al. Insight into sodium insertion and the storage mechanism in hard carbon[J]. ACS Energy Letters,2018,3(12):2851-2857. doi: 10.1021/acsenergylett.8b01761
    [79] Alvin S, Cahyadi H S, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials,2020,10(20):2000283. doi: 10.1002/aenm.202000283
    [80] Xie L J, Tang C, Song M X, et al. Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: a review[J]. Journal of Energy Chemistry,2022,72:554-569. doi: 10.1016/j.jechem.2022.05.006
    [81] Stevens D A, Dahn J R, Dalhousie U, et al. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society,2000,147(4):1271-1273. doi: 10.1149/1.1393348
    [82] Sun N, Guan Y B, Liu Y T, et al. Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder[J]. Carbon,2018,137:475-483. doi: 10.1016/j.carbon.2018.05.056
    [83] Komaba S, Murata W, Ishikawa T, et al. Electrochemical na insertion and solid electrolyte interphase for hard-carbon electrodes and application to na-ion batteries[J]. Advanced Functional Materials,2011,21(20):3859-3867. doi: 10.1002/adfm.201100854
    [84] Chen X Y, Liu C Y, Fang Y J, et al. Understanding ofthe sodium storage mechanism in hard carbon anodes.[J] Carbon Energy, 2022, 1–18.
    [85] Cao Y, Xiao L, Sushko ML, et al. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012;12(7): 3783-3787.
    [86] Saurel D, Orayech B, Xiao B W, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials,2018,8(17):1703268. doi: 10.1002/aenm.201703268
    [87] Zou Y J, Li H, Qin K Y, et al. Low-cost lignite-derived hard carbon for high-performance sodium-ion storage[J]. Journal of Materials Science,2020,55(14):5994-6004. doi: 10.1007/s10853-020-04420-0
    [88] Lu H Y, Sun S F, Xiao L F, et al. High-capacity hard carbon pyrolyzed from subbituminous coal as anode for sodium-ion batteries[J]. ACS Applied Energy Materials,2019,2(1):729-735. doi: 10.1021/acsaem.8b01784
    [89] Wang B Y, Xia J L, Dong X L, et al. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism[J]. CIESC Journal,2021,72(11):5738-5750.
    [90] Chang X Q. Preparation and properties of carbon-based anode materials for potassium ion batteries[D]. Beijing University of Chemical Technology, 2022.
    [91] Chen H, Sun N, Zhu Q Z, et al. Microcrystalline hybridization enhanced coal-based carbon anode for advanced sodium-ion batteries[J]. Advanced science,2022,9(20):e2200023. doi: 10.1002/advs.202200023
    [92] Hong Z S, Zhen Y C, Ruan Y, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent na-ion storage performance[J]. Advanced Materials (Weinheim),2018,30(29):e1802035. doi: 10.1002/adma.201802035
    [93] Yan J, Li H M, Wang K L, et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode[J]. Advanced Energy Materials,2021,11(21):2003911. doi: 10.1002/aenm.202003911
    [94] Wang X Y, Hou M X, Shi Z L, et al. Regulate phosphorus configuration in high p-doped hard carbon as a superanode for sodium storage[J]. ACS Applied Materials & Interfaces,2021,13(10):12059-12068.
    [95] Liu R F. Carbons derived from coal based amphiphilic carbonaceous material and their lithium/sodium storage performances[D]. Dalian University of Technology, 2018.
    [96] Li Z F, Ma L, Surta T W, et al. High capacity of hard carbon anode in Na-ion batteries unlocked by po x doping[J]. ACS Energy Letters,2016,1(2):395-401. doi: 10.1021/acsenergylett.6b00172
    [97] Song W J, Tang Y K, Liu J M, et al. Mild pretreatment synthesis of coal-based phosphorus-doped hard carbon with extended plateau capacity as anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds,2023,946:169384. doi: 10.1016/j.jallcom.2023.169384
    [98] Gao S S, Tang Y K, Wang L, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries[J]. ACS Sustainable Chemistry & Engineering,2018,6(3):3255-3226.
    [99] Abou R J, Ait L N, Autret L C, et al. Bituminous coal as low-cost anode materials for sodium-ion and lithium-ion batteries[J]. Energy Technology (Weinheim, Germany), 2019, 7(7).
    [100] Xiao N, Zhang X Y, Liu C, et al. Coal-based carbon anodes for high-performance potassium-ion batteries[J]. Carbon,2019,147:574-581. doi: 10.1016/j.carbon.2019.03.020
    [101] Zhang X Q. Study on catalytic graphitization of shenfu coal and macerals[D]. Xi’an University of Science and Technology, 2014.
    [102] QIU D. Research on the graphitization process of coal and the migration rule of coal-derived minerals[D]. China University of Mining and Technology, 2019.
    [103] Liu Z F, Cao D Y, Chen G J, et al. Contrasting graphitization differences between vitrinite and inertinite based on high-temperature and high-pressure experiments[J]. Fuel,2024,362:130796. doi: 10.1016/j.fuel.2023.130796
    [104] Thapaliya B P, Luo H M, Li M Y, et al. Molten salt assisted low-temperature electro-catalytic graphitization of coal chars[J]. Journal of the Electrochemical Society,2021,168(4):46504. doi: 10.1149/1945-7111/abf219
    [105] Zhu Z L, Zuo H B, Li S J, et al. A green electrochemical transformation of inferior coals to crystalline graphite for stable li-ion storage[J]. Journal of Materials Chemistry. A, Materials for Energy and Sustainability,2019,7(13):7533-7540.
    [106] Li J, Cao Y L, Wang L X, et al. Cost-effective synthesis of bamboo-structure carbon nanotubes from coal for reversible lithium storage[J]. RSC Advances,2017,7(55):34770-34775. doi: 10.1039/C7RA04047D
    [107] Gao S S, Tang Y K, Gao Y, et al. Highly crystalized Co2Mo3O8 hexagonal nanoplates interconnected by coal-derived carbon via the molten-salt-assisted method for competitive li-ion battery anodes[J]. ACS Applied Materials & Interfaces,2019,11(7):7006-7013.
    [108] Zhao X J, Jia W, Wu X Y, et al. Ultrafine MoO3 anchored in coal-based carbon nanofibers as anode for advanced lithium-ion batteries[J]. Carbon,2020,156:445-452. doi: 10.1016/j.carbon.2019.09.065
    [109] Wang H Q, Zhao Z B, Chen M, et al. Nitrogen-doped mesoporous carbon nanosheets from coal tar as high performance anode materials for lithium ion batteries[J]. Carbon,2015,81:850-851.
    [110] Yang J, Ma L L, Zhou X Y. Purification process of coalbased coke powder as anode for li-ion batteries[J]. Journal of Central South University,2014,21:857-861. doi: 10.1007/s11771-014-2010-8
    [111] Han Y J, Kim J, Yeo J S, et al. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: effects of composition and softening points of coal tar pitch[J]. Carbon,2015,94:432-438. doi: 10.1016/j.carbon.2015.07.030
    [112] Dyartanti E R, Jumari A, Nur A, et al. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film[J]. AIP Conference Proceedings, 2016, 1710(1).
    [113] Dunlap N A, Kim S, Jeong J J, et al. Simple and inexpensive coal-tar-pitch derived Si-C anode composite for all-solid-state li-ion batteries[J]. Solid State Ionics,2018,324:207-217. doi: 10.1016/j.ssi.2018.07.013
    [114] Xing B L, Zhang C T, Cao Y J, et al. Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries[J]. Fuel Processing Technology,2018,172:162-171. doi: 10.1016/j.fuproc.2017.12.018
    [115] Pan G H, Liang W B, Liang P, et al. Effect of vacuum-carbonization treatment of soft carbon anodes derived from coal-based mesophase pitch for lithium-ion batteries[J]. Clean Energy,2019,3(3):211-216. doi: 10.1093/ce/zkz011
    [116] Li X, Sun N, Tian X D, et al. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries[J]. Energy & Fuels,2020,34(2):2445-2451.
    [117] Wang R, Yu J L, Islam F, et al. State-of-the-art research and applications of carbon foam composite materials as electrodes for high-capacity lithium batteries[J]. Energy & Fuels,2020,34(7):7935-7954.
    [118] Zeng H H, Xing B L, Zhang C T, et al. In situ synthesis of MnO2/porous graphitic carbon composites as high-capacity anode materials for lithium-ion batteries[J]. Energy & Fuels,2020,34(2):2480-2491.
    [119] Örkün Y, Karatepe N, Yavuz R. Influence of temperature and impregnation ratio of H3PO4 on the production of activated carbon from hazelnut shell[J]. ACTA PHYSICA POLONICA A,2012,121:277-280. doi: 10.12693/APhysPolA.121.277
    [120] Xing B L, Huang G X, Chen L , et al. Preparation and characterization of high quality low-rank coal based activated carbon[J]. Journal of China Coal Society. 2013, 38(S1): 217-222.
    [121] Jie W. Application status and development trend of coal-based activated carbon in China[J]. Coal Science and Technology,2017,45(10):16-23.
    [122] Chen W K, Hu Z H, Bai X Y, et al. Application research status and development trend of coal-based activated carbon in China[J]. Goal Quality Technology,2023,38(3):1-10.
    [123] Sun Z C. The present status and development trend of coal based activated carbon industry[J]. Goal Quality and Technology,2010(4):49-52.
    [124] Jiang Y, Liu D Q, Jie Q. Status and development trend of coal-based activated carbon production technology in China[J]. Clean Coal Technology,2018,24(1):26-32.
    [125] Gergova K, Eser S. Effects of activation method on the pore structure of activated carbons from apricot stones[J]. Carbon,1996,34(7):879-888. doi: 10.1016/0008-6223(96)00028-0
    [126] Peng Z, Guo Z L, Chu W, et al. Facile synthesis of high-surface-area activated carbon from coal for supercapacitors and high CO2 sorption[J]. RSC Advances,2016,6(48):42019-42028. doi: 10.1039/C5RA26044B
    [127] Sousa J C, Mahamud M, Parra J B, et al. Effect of operation variables in the obtention of tailored active carbons from coals[J]. Fuel Processing Technology,1993,36(1):333-339.
    [128] Yang I, Jung M, Kim M S, et al. Physical and chemical activation mechanisms of carbon materials based on the microdomain model[J]. Journal of Materials Chemistry A,2021,9(15):9815-9825. doi: 10.1039/D1TA00765C
    [129] Yao X, Xie Q, Yang C, et al. Additivity of pore structural parameters of granular activated carbons derived from different coals and their blends[J]. International Journal of Mining Science and Technology,2016,26(4):661-667. doi: 10.1016/j.ijmst.2016.05.019
    [130] Pan Z L, Yu F P, Li L, et al. Low-cost electrochemical filtration carbon membrane prepared from coal via self-bonding[J]. Chemical Engineering Journal,2020,385:123928. doi: 10.1016/j.cej.2019.123928
    [131] Pis J, Centeno T A, Mahamud M, et al. Preparation of active carbons from coal part (i) Oxidation of coal[J]. Fuel Processing Technology,1996,47(2):119-138. doi: 10.1016/0378-3820(96)01003-X
    [132] Pis J, Mahamud M, Parra J, et al. Preparation of active carbons from coal part (ii) Carbonisation of oxidised coal[J]. Fuel Processing Technology,1997,50(2):249-260.
    [133] Liu D D, Gao J, Cao Q X, et al. Improvement of activated carbon from jixi bituminous coal by air peroxidation[J]. Energy & Fuels,2017,31(2):1406-1415.
    [134] Liu Y, Zhu Y M, Liu S M, et al. Molecular structure controls on micropore evolution in coal vitrinite during coalification[J]. International Journal of Coal Geology,2018,199:19-30. doi: 10.1016/j.coal.2018.09.012
    [135] Wu C, Chen C, Wang J, et al. Preparation technology study of coal-based agglomerated activated carbon[J]. Coal Chemical Industry,2017,45(2):49-51.
    [136] An D N. Study on catalytic activation of shenfu briquette semi coke with carbon dioxide/steam[D]. Xi’an University of Science and Technology, 2015.
    [137] Wang L X, Wang R R, Zhao H Y, et al. High rate performance porous carbon prepared from coal for supercapacitors[J]. Materials Letters,2015,149:85-88. doi: 10.1016/j.matlet.2014.11.051
    [138] Yang X X, Zhang Y T, Yang F S, et al. Preparation of activated carbon from coal by physical-chemical coupled activation[J]. Coal Conversion,2009,32(2):66-70.
    [139] Xie Q, Zhang X L, Liang D C, et al. Directional preparation of coal-based activated carbon: Principles, approaches and applications[J]. Coal Science and Technology,2021,49(1):100-127.
    [140] Bodoev N V, Gruber R, Kucherenko V A, et al. A novel process for preparation of active carbon from sapropelitic coals[J]. Fuel,1998,77(6):473-478. doi: 10.1016/S0016-2361(97)00273-1
    [141] Ahmadpour A, Do D D. The preparation of active carbons from coal by chemical and physical activation[J]. Carbon,1996,34(4):471-479. doi: 10.1016/0008-6223(95)00204-9
    [142] Zhang J. Study on principles of magnetization and pore size regulation of coal-based activated carbon[D]. China University of Mining & Technology, Beijing, 2010.
    [143] Huang Y B, Wang X M, Wang X J, et al. Experimental study on activated carbon production from phosphoric acid activated coal[Z]. 2013, Shanghai: 70-71.
    [144] Liu J K, Sun Z, Fan L H. Effects of activation temperature on structures and properties of hypercoal-based activated carbons[J]. Coal Conversion,2020,43(2):35-42.
    [145] Lu L X, Bai F R. Research on the influence of potassium carbonate on the pyrolysis performance of Fugu bituminous coal[J]. Inner Mongolia Petrochemical Industry,2017,43(6):33-34.
    [146] Pietrzak R, Wachowska H, Nowicki P, et al. Preparation of modified active carbon from brown coal by ammoxidation[J]. Fuel Processing Technology,2007,88(4):409-415. doi: 10.1016/j.fuproc.2006.11.001
    [147] Khelifi A, Almazán A M C, Pérez M M., et al. Influence of nitric acid concentration on the characteristics of active carbons obtained from a mineral coal[J]. Fuel Processing Technology,2010,91(10):1338-1344. doi: 10.1016/j.fuproc.2010.05.004
    [148] Zhang H R, Niu J, Guo Y X, et al. Indispensable role of inherent calcite in coal on activated carbon (ac)’s preparation and applications[J]. Fuel,2021,287:119481. doi: 10.1016/j.fuel.2020.119481
    [149] Kopac T, Kırca Y, Toprak A. Synthesis and characterization of koh/boron modified activated carbons from coal and their hydrogen sorption characteristics[J]. International Journal of Hydrogen Energy,2017,42(37):23606-23616. doi: 10.1016/j.ijhydene.2017.01.195
    [150] Jagtoyen M, Groppo J, Derbyshire F. Activated carbons from bituminous coals by reaction with H3PO4: the influence of coal cleaning[J]. Fuel Processing Technology,1993,34(2):85-96. doi: 10.1016/0378-3820(93)90093-J
    [151] Zhang G, Yang H F, Jiang M L, et al. Preparation and characterization of activated carbon derived from deashing coal slime with ZnCl2 activation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,641:128124. doi: 10.1016/j.colsurfa.2021.128124
    [152] Zhang H R, Niu J, Yin X, et al. Role of inherent pyrite in coal on physicochemical structure of activated carbon and adsorption capacity[J]. Fuel,2020,262:116527. doi: 10.1016/j.fuel.2019.116527
    [153] Das B, Kundu R, Chakravarty S. Preparation and characterization of graphene oxide from coal[J]. Materials Chemistry and Physics,2022,290:126597. doi: 10.1016/j.matchemphys.2022.126597
    [154] Chong J K, Cheng X, Xiao L H, et al. Green production of tunable multicolor nanoparticles with diamond structure from long-flame coal by a one-step mild oxidation[J]. Ceramics international,2023,49(23):38448-38457. doi: 10.1016/j.ceramint.2023.09.174
    [155] Powell C, Beall G W. Graphene oxide and graphene from low grade coal: Synthesis, characterization and applications[J]. Current Opinion In Colloid & Interface Science,2015,20(5-6):362-366.
    [156] Manoj B, Kunjomana A G. Systematic investigations of graphene layers in subbituminous coal[J]. J Appl Chem.,2014(87):1726-1733.
    [157] Lee S Y, Mahajan R L. A facile method for coal to graphene oxide and its application to a biosensor[J]. Carbon (New York),2021,181:408-420.
    [158] Wang Y M, Zhang C H. Reduced graphene oxide derived from low-grade coal for high-performance flexible supercapacitors with ultrahigh cyclability[J]. Nanomaterials (Basel), 2022, 12(17).
    [159] Pang L S K, Wilson M A. Nanotubes from coal[J]. Energy & Fuels,1993,7(3):436-437.
    [160] Williams K A, Tachibana M, Allen J L, et al. Single-wall carbon nanotubes from coal[J]. Chemical physics letters,1999,310(1):31-37.
    [161] Li J, Cao Y L, Wang L X, et al. Cost-effective synthesis of bamboo-structure carbon nanotubes from coal for reversible lithium storage[J]. RSC Advances,2017,7(55):34770-34775. doi: 10.1039/C7RA04047D
    [162] Moothi K, Simate G S, Falcon R, et al. Carbon nanotube synthesis using coal pyrolysis[J]. Langmuir,2015,31(34):9464-9472. doi: 10.1021/acs.langmuir.5b01894
    [163] Lv X M, Zhang T K, Luo Y H, et al. Study on carbon nanotubes and activated carbon hybrids by pyrolysis of coal[J]. Journal of Analytical And Applied Pyrolysis,2020,146:104717. doi: 10.1016/j.jaap.2019.104717
    [164] Zhang T K, Wang Q, Li G Q, et al. Formation of carbon nanotubes from potassium catalyzed pyrolysis of bituminous coal[J]. Fuel (Guildford),2019,239:230-238. doi: 10.1016/j.fuel.2018.11.010
    [165] Lv X M, Zhang Y F, Wang Y, et al. Formation of coal-based carbon nanotubes by fe-k catalyst[J]. Journal of Analytical and Applied Pyrolysis,2022,161:105400. doi: 10.1016/j.jaap.2021.105400
    [166] Li X, Zhu X Q, Kenshiro O, et al. Preparation of carbon fibers from low-olecular-weight compoundsobtained from low-rank coal and biomass by solvent extraction[J]. New Carbon Materials,2017,32(01):41-47. doi: 10.1016/S1872-5805(17)60106-9
    [167] Yang J X, Wei W J, Qi Y, et al. Research progress on hyper-coal for efficient utilization[J]. Journal of China Coal Society,2020,45(9):3301-3313.
    [168] Qian W X, Li X, Zhu X Q, et al. Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors[J]. RSC Advances,2020,10(14):8172-8180. doi: 10.1039/C9RA09966B
    [169] Yang J X, Nakabayashi K, Miyawaki J, et al. Preparation of isotropic pitch-based carbon fiber using hyper coal through co-carbonation with ethylene bottom oil[J]. Journal of Industrial and Engineering Chemistry 34 (2016) 397-404.
    [170] Cheng Z F, Zhao X J, Fan W D, et al. Research on coal-based carbon nanofiber as anode materials for lithium-ion batteries[J]. Carbon Techniques,2021,40(3):20-25.
    [171] Yang J X, Nakabayashi K, Miyawaki J, et al. Preparation of pitch based carbon fibers using Hyper-coal as a raw material[J]. Carbon 106 (2016) 28-36.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  23
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 录用日期:  2024-06-28
  • 修回日期:  2024-06-27
  • 网络出版日期:  2024-07-01

目录

    /

    返回文章
    返回