留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of metal–organic frameworks and their derivatives for lithium-ion capacitors

ZHAO Sha-sha ZHANG Xiong LI Chen AN Ya-bin HU Tao WANG Kai SUN Xian-zhong MA Yan-wei

赵沙沙, 张熊, 李晨, 安亚斌, 胡涛, 王凯, 孙现众, 马衍伟. 金属有机框架及其衍生物在锂离子电容器中的应用. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60873-5
引用本文: 赵沙沙, 张熊, 李晨, 安亚斌, 胡涛, 王凯, 孙现众, 马衍伟. 金属有机框架及其衍生物在锂离子电容器中的应用. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60873-5
ZHAO Sha-sha, ZHANG Xiong, LI Chen, AN Ya-bin, HU Tao, WANG Kai, SUN Xian-zhong, MA Yan-wei. Application of metal–organic frameworks and their derivatives for lithium-ion capacitors. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60873-5
Citation: ZHAO Sha-sha, ZHANG Xiong, LI Chen, AN Ya-bin, HU Tao, WANG Kai, SUN Xian-zhong, MA Yan-wei. Application of metal–organic frameworks and their derivatives for lithium-ion capacitors. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60873-5

金属有机框架及其衍生物在锂离子电容器中的应用

doi: 10.1016/S1872-5805(24)60873-5
详细信息
    通讯作者:

    张 熊. E-mail:zhangxiong@mail.iee.ac.cn

    孙现众. E-mail:xzsun@mail.iee.ac.cn

    马衍伟. E-mail:ywma@mail.iee.ac.cn

Application of metal–organic frameworks and their derivatives for lithium-ion capacitors

More Information
  • 摘要: 为了满足不断增长的能源存储需求,迫切需要既具有高能量密度又具有高功率密度的锂离子电容器(LICs)。LICs有效地平衡了传统电池的高能量密度与超级电容器(SCs)的卓越功率密度和长寿命。然而,LICs的发展仍然面临着正负极之间动力学过程和容量不匹配的问题。金属有机框架(MOFs)及其衍生物因其大的比表面积、丰富的孔结构、多样的拓扑结构以及可定制的功能位点而受到广泛关注,使其成为实现高性能LICs的有力候选材料。MOF衍生碳因其高的电导性和大的比表面积,可提供更多电荷存储和快速离子传输。MOF衍生的过渡金属氧化物具有高比容量和优异的电化学稳定性。此外,MOF衍生的金属化合物/碳之间的协同效应,增强了电容性和法拉第反应,从而有利于提高其整体电化学性能。本综述系统总结了MOFs及其衍生物在LICs中的最新研究进展,阐明了结构/组成与电化学性能之间的关联,并提供了未来的展望,对电化学储能器件的发展具有指导意义。
  • Figure  1.  Ragone plot for various electrochemical energy storage devices[45]. Reproduced with permission. Copyright @ 2014 American Chemical Society

    Figure  2.  Schematic diagram of the structure of LICs, LIBs and SCs[74]. Reproduced with permission. Copyright @ 2020 Elsevier B.V

    Figure  3.  Working mechanism, CV curve and GCD curve of EDLC materials, pseudocapacitive materials and battery-type materials

    Figure  4.  Schematic diagram of the electrode classification (a) supercapacitor, (b) lithium-ion battery, and (c) lithium-ion capacitor, represented by the charging potential curve and the corresponding energy storage equation[76]. Reproduced with permission. Copyright @ 2015 The Royal Society of Chemistry

    Figure  5.  Migration process of anions and cations in LICs

    Figure  6.  (a) Zr-MOF. (b) Lithiation/delithiation process of Zr-MOF anode. (c) Rate performance of LICs[91]. Reproduced with permission. Copyright @ 2020 Wiley-VCH. (d) Fabrication process of Co/Fe-BDC. (e) Lithiation/delithiation process during charge and discharge. (f) Cycling stability of LIC[94]. Reproduced with permission. Copyright @ 2022 Elsevier Ltd. (g) Electrochemical performance of a TTFTB-MnCo-MOF 1 ||AC LIC full cell[92]. Reproduced with permission. Copyright @ 2023 American Chemical Society

    Figure  7.  (a) Charge storage mechanism of OLC. (b) The contribution percentage of capacitance control and diffusion control to the capacity of graphite and OLC. (c) Rate performance for graphite//AC and OLC//AC[122]. Reproduced with permission. Copyright @ 2022 Wiley-VCH. (d) Synthesis process of HCF. (e) HCF//a-HCF soft-pack LIC lights up a small light bulb[133]. Reproduced with permission. Copyright @2022 Elsevier B.V. (f) The schematic illustration of the preparation process of SNC. (g) Schematic diagram and (h) cycle life of pre-lithiated HC//SNC LIC[137]. Reproduced with permission. Copyright @ 2023 Elsevier B.V

    Figure  8.  (a) Schematic illustration for the fabrication of α-Fe2O3 HPNP//GCNS LIC. (b) Specific capacity versus cycling time in α-Fe2O3 HPNP and α-Fe2O3 NP at different charging rates. (c) Charge and discharge curves of α-Fe2O3 HPNP//GCNS LIC[143]. Reproduced with permission. Copyright @ 2021 American Chemical Society. (d) Fabrication method of Ti3C2@Co3O4/ZnO. (e) Rate performances of Ti3C2, Co3O4/ZnO and Ti3C2@Co3O4/ZnO at various current densities. (f) Schematic representation of the construction of Ti3C2@Co3O4/ZnO//AC LIC[38]. Reproduced with permission. Copyright @ 2022 Elsevier Inc

    Figure  9.  (a) Conductive carbon network of MoO2 and rGO shell. (b) CV curves of MoO2@rGO anode and PANI@rGO cathode. (c) Charge–discharge cycling stability at 5 A g−1[37]. Reproduced with permission. Copyright @ 2020 Wiley-VCH. (d) Fabrication method of Ti3C2/Co3O4@C. (e) Construction diagram of Ti3C2/Co3O4@C//AC LICs. (f) Ragone plots of Ti3C2/Co3O4@C//AC LICs[154]. Reproduced with permission. Copyright @ 2023 Elsevier B.V. (g) Scanning transmission electron microscopy (STEM) image of MnO2@C-NS. (h) Schematic illustration of design of unique MnO2@C-NS//NPCS LICs. (i) CD curve of LIC, and potential curves of MnO2@C-NS anode and NPCS cathode. (j) Specific capacitance and capacity of MnO2@C-NS//NPCS LIC as a function of charge rate[155]. Reproduced with permission. Copyright @ 2019 Wiley-VCH

    Figure  10.  (a) TEM image of Co3ZnC@NC. (b) Schematic illustration of Co3ZnC@NC||MPC LICs. (c) Ragone plot of the Co3ZnC@NC||MPC LICs[165]. Reproduced with permission. Copyright @ 2018 Elsevier B.V. (d) Schematic diagram of the synthesis route of Mn2SnO4@C. (e) Rate performance from 0.1 to 5 A g−1[172]. Reproduced with permission. Copyright @ 2023 Elsevier B.V. (f) Schematic diagram of the fabrication process of CoSnx@CPAN nanofibers. (g) GCD curves of CoSnx@CPAN-based full-cell LICs[173]. Reproduced with permission. Copyright @ 2020 Elsevier Ltd

    Figure  11.  (a) Fabrication method of Co3O4@N–C and CoTe2@N–C. (b) Cycling performance and Coulombic efficiency of CoTe2@N–C//HPC LICs[178]. Reproduced with permission. Copyright @ 2021 Elsevier Ltd. (c) Fabrication process of CoSe2@NC. (d) Ragone plot of AC//CoSe2@NC LICs reported[182]. Reproduced with permission. Copyright @ 2024 Springer Nature. (e) SEM images of CoP@C. (f) Schematic diagram of discharge mechanism of AC//CoP@C LICs. (g) The charge density difference of CoP@C and CoP[184]. Reproduced with permission. Copyright @ 2024 Wiley-VCH GmbH

    Table  1.   MOFs and their derivatives as electrode materials for LICs

    MOFs Anode//Cathode Energy density/Wh/kg@Power
    density/W/kg (based on the total mass
    of the anode and cathode.)
    Cycling stability Refs
    Pristine MOFs
    Co3(HHTP)2 Co3(HHTP)2//AC 64@10 000 1000 cycles [89]
    TTFTB-MnCo-MOF 1 TTFTB-MnCo-MOF 1//AC 141.4@250 84.1% after 8000 cycles, [92]
    TTF-Co-MOF 1 TTF-Co-MOF 1||AC 132.4@12500 88% after 8000 cycles [93]
    Co4–Ir MOF Co4–Ir MOF//AC 165.4@12 000 73.6% after 3000 cycles [185]
    Cu-HCF Cu-HCF//graphitic carbon 42.78@2619 84.8% after 5000 cycles [186]
    Zr-MOF Zr-MOF//AC 122.5@12 500 1000 cycles [91]
    MOF-derived metal compounds
    Fe-MOF a-Fe2O3 HPNP//carbon spheres 107@9680 84% after 2500 cycles [143]
    CoZn-ZIF Ti3C2@Co3O4/ZnO//AC 196.8@3500 75% after 6000 cycles [38]
    MOF-derived carbons
    Fe-BTC Onion-like carbons //AC 224@14436 4000 cycles [122]
    Zn-TFBDC PC//Zn-T-PC 95.8@46000 83.67% after 5000 cycles [109]
    ZIF-8@ZnO HCF// a-HCF 162@15800 76% after 15,000 cycles [133]
    MOF-derived metal/carbons
    ZIF-67 CoSnx/carbon nanofiber//porous carbon 143@22800 82.9% after 5000 cycles [173]
    NENU-5 MoO2@rGO//PANI@rGO 242@28750 93% after 10000 cycles [37]
    Mn-MOF MnO2@C//nanoporous carbon 166@3500 91% after 5000 cycles [154]
    CoxZnyZIF-8 Co3ZnC@NC//graphite 67.1@1480 1000 cycles [166]
    Mn-BDC Mn2SnO4@C//CSBC 217.9@21000 79% after 5000 cycles [172]
    Co-MOF Ti3C2/Co3O4@C//AC 380.3@7632 70% after 6000 cycles. [154]
    下载: 导出CSV
  • [1] Hou H, Banks C E, Jing M, et al. Carbon quantum dots and their derivative 3d porous carbon frameworks for sodium-ion batteries with ultralong cycle life[J]. Advanced Materials,2015,27(47):7861-7866. doi: 10.1002/adma.201503816
    [2] Zhang H, Qi G C, Liu W, et al. Bimetallic phosphoselenide nanosheets as bifunctional catalysts for 5-hydroxymethylfurfural oxidation and hydrogen evolution[J]. Inorganic Chemistry Frontiers,2023,10(8):2423-2429. doi: 10.1039/D3QI00013C
    [3] Sun C K, Zhang X, An Y B, et al. Low-temperature carbonized nitrogen-doped hard carbon nanofiber toward high-performance sodium-ion capacitors[J]. Energy & Environmental Materials,2023,6(4):e12603.
    [4] Zhang X, Sun X Z, An Y B, et al. Design of a fast-charge lithium-ion capacitor pack for automated guided vehicle[J]. Journal of Energy Storage,2022,48:104045. doi: 10.1016/j.est.2022.104045
    [5] Sun C K, Zhang X, Li C, et al. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density[J]. Journal of Energy Chemistry,2022,64:442-450. doi: 10.1016/j.jechem.2021.05.010
    [6] Song S, Zhang X, An Y B, et al. Lifetime prediction of lithium-ion capacitors using electro-thermal-aging co-simulation platform[J]. Journal of Energy Storage,2024,85:111088. doi: 10.1016/j.est.2024.111088
    [7] Zhou W, Liu Z E, Chen W, et al. A review on thermal behaviors and thermal management systems for supercapacitors[J]. Batteries,2023,9(2):128. doi: 10.3390/batteries9020128
    [8] Yi S, Wang L, Zhang X, et al. Recent advances in MXene-based nanocomposites for supercapacitors[J]. Nanotechnology,2023,34(43):432001. doi: 10.1088/1361-6528/ace8a0
    [9] Li C, Zhang X, Wang K, et al. Three dimensional graphene networks for supercapacitor electrode materials[J]. New Carbon Materials,2015,30(3):193-206. doi: 10.1016/S1872-5805(15)60185-8
    [10] Li C, Zhang X, Wang K, et al. High-power lithium-ion hybrid supercapacitor enabled by holey carbon nanolayers with targeted porosity[J]. Journal of Power Sources,2018,400:468-477. doi: 10.1016/j.jpowsour.2018.08.013
    [11] Li C, An Y B, Wang L, et al. Balancing microcrystalline domains in hard carbon with robust kinetics for a 46. 7 Wh kg−1 practical lithium-ion capacitor[J]. Chemical Engineering Journal,2024,485:149880. doi: 10.1016/j.cej.2024.149880
    [12] Li C, Zhang X, Sun C, et al. Recent progress of graphene-based materials in lithium-ion capacitors[J]. Journal of Physics D: Applied Physics,2019,52(14):143001. doi: 10.1088/1361-6463/aaff3a
    [13] Sun X Z, Zhang X, Zhang H T, et al. High performance lithium-ion hybrid capacitors with pre-lithiated hard carbon anodes and bifunctional cathode electrodes[J]. Journal of Power Sources,2014,270:318-325. doi: 10.1016/j.jpowsour.2014.07.146
    [14] Guo Z, Liu Z E, Chen W, et al. Battery-type lithium-ion hybrid capacitors: current status and future perspectives[J]. Batteries,2023,9(2):74. doi: 10.3390/batteries9020074
    [15] Song S, Zhang X, An Y B, et al. Floating aging mechanism of lithium-ion capacitors: Impedance model and post-mortem analysis[J]. Journal of Power Sources,2023,557:232597. doi: 10.1016/j.jpowsour.2022.232597
    [16] Zhou W, Liu Z E, An Y B, et al. Thermal behavior analysis of lithium-ion capacitors at transient high discharge rates[J]. Journal of Energy Storage,2022,53:105208. doi: 10.1016/j.est.2022.105208
    [17] Qin L, Zhu S H, Cheng C, et al. Single-crystal nano-subunits assembled accordion-shape wnb2o8 framework with high ionic/electronic conductivities towards li-ion capacitors[J]. Small,2022,18(13):2107987. doi: 10.1002/smll.202107987
    [18] Sun X Z, An Y B, Zhang X, et al. Unveil overcharge performances of activated carbon cathode in various li-ion electrolytes[J]. Batteries,2023,9(1):11.
    [19] Zhang Y S, Liu Z E, Sun X Z, et al. Experimental study of thermal charge–discharge behaviors of pouch lithium-ion capacitors[J]. Journal of Energy Storage,2019,25:100902. doi: 10.1016/j.est.2019.100902
    [20] Wang L, Zhang X, Xu Y N, et al. Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors[J]. Advanced Functional Materials,2021,31(36):2104286. doi: 10.1002/adfm.202104286
    [21] Que L F, Yu F D, He K W, et al. Robust and conductive Na2Ti2O5– x nanowire arrays for high-performance flexible sodium-ion capacitor[J]. Chemistry of Materials,2017,29(21):9133-9141. doi: 10.1021/acs.chemmater.7b02864
    [22] Cheng C, Wu D X, Gong T Y, et al. Internal and external cultivation design of zero-strain columbite-structured MNb2O6 toward lithium-ion capacitors as competitive anodes[J]. Advanced Energy Materials,2023,13(38):2302107. doi: 10.1002/aenm.202302107
    [23] Li C, Zhang X, Wang K, et al. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability[J]. Advanced Materials,2017,29(7):1604690. doi: 10.1002/adma.201604690
    [24] Liu W J, An Y B, Wang L, et al. Mechanically flexible reduced graphene oxide/carbon composite films for high-performance quasi-solid-state lithium-ion capacitors[J]. Journal of Energy Chemistry,2023,80:68-76. doi: 10.1016/j.jechem.2023.01.031
    [25] Song S, Zhang X, Li C, et al. Anomalous diffusion models in frequency-domain characterization of lithium-ion capacitors[J]. Journal of Power Sources,2021,490:229332. doi: 10.1016/j.jpowsour.2020.229332
    [26] Liu Y, Soucaze-Guillous B, Taberna P-L, et al. Understanding of carbon-based supercapacitors ageing mechanisms by electrochemical and analytical methods[J]. Journal of Power Sources,2017,366:123-130. doi: 10.1016/j.jpowsour.2017.08.104
    [27] Peng Q F, Wang K, Gong Y, et al. Tailoring lignin‐derived porous carbon toward high‐energy lithium‐ion capacitor through varying sp2- and sp3-hybridized bonding[J]. Advanced Functional Materials,2023,33(52):2308284. doi: 10.1002/adfm.202308284
    [28] Li C, Zhang X, Wang K, et al. Nitrogen-enriched graphene framework from a large-scale magnesiothermic conversion of CO2 with synergistic kinetics for high-power lithium-ion capacitors[J]. NPG Asia Materials,2021,13(1):59. doi: 10.1038/s41427-021-00327-7
    [29] Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):1230444. doi: 10.1126/science.1230444
    [30] Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers[J]. Angewandte Chemie International Edition,2004,43(18):2334-2375. doi: 10.1002/anie.200300610
    [31] Yaghi O M, Li G M, Li H L. Selective binding and removal of guests in a microporous metal–organic framework[J]. Nature,1995,378(6558):703-706. doi: 10.1038/378703a0
    [32] Yaghi O M, Li H L. Hydrothermal synthesis of a metal–organic framework containing large rectangular channels[J]. Journal of the American Chemical Society,1995,117(41):10401-10402. doi: 10.1021/ja00146a033
    [33] Wang W, Xiong X H, Zhu N X, et al. A rare flexible metal–organic framework based on a tailorable Mn8-cluster showing smart responsiveness to aromatic guests and capacity for gas separation[J]. Angewandte Chemie International Edition,2022,134(26):e202201766.
    [34] Zhao S L, Wang Y, Dong J C, et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution[J]. Nature Energy,2016,1(12):1-10.
    [35] Liao P Q, Chen X W, Liu S Y, et al. Putting an ultrahigh concentration of amine groups into a metal–organic framework for CO2 capture at low pressures[J]. Chemical Science,2016,7(10):6528-6533. doi: 10.1039/C6SC00836D
    [36] Zhang Y L, Li Y N, Wang X S, et al. A metal–organic framework-modified separator enables long cycling lithium-ion capacitors with asymmetric electrolyte design[J]. Journal of Materials Chemistry A,2022,10(37):19852-19858. doi: 10.1039/D2TA02256G
    [37] Ock I W, Lee J, Kang J K. Metal–organic framework‐derived anode and polyaniline chain networked cathode with mesoporous and conductive pathways for high energy density, ultrafast rechargeable, and long‐life hybrid capacitors[J]. Advanced Energy Materials,2020,10(48):2001851. doi: 10.1002/aenm.202001851
    [38] Wu W L, Zhao C H, Liu H, et al. Hierarchical architecture of two-dimensional Ti3C2 nanosheets @ Metal-Organic framework derivatives as anode for hybrid li-ion capacitors[J]. Journal of Colloid and Interface Science,2022,623:216-225. doi: 10.1016/j.jcis.2022.05.038
    [39] Tao S A, Cai J M, Cao Z W, et al. Revealing the valence evolution of metal element in heterostructures for ultra-high power li-ion capacitors[J]. Advanced Energy Materials,2023,13(35):2301653. doi: 10.1002/aenm.202301653
    [40] Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for metal–organic framework-derived nanoporous carbons toward supercapacitor applications[J]. Accounts of Chemical Research,2016,49(12):2796-2806. doi: 10.1021/acs.accounts.6b00460
    [41] Ma Y, Ma Y J, Kim G T, et al. Superior lithium storage capacity of α-MnS nanoparticles embedded in S-doped carbonaceous mesoporous frameworks[J]. Advanced Energy Materials,2019,9(43):1902077. doi: 10.1002/aenm.201902077
    [42] Yan J, Liu T, Liu X D, et al. Metal–organic framework-based materials for flexible supercapacitor application[J]. Coordination Chemistry Reviews,2022,452:214300. doi: 10.1016/j.ccr.2021.214300
    [43] Lin J, Chenna Krishna Reddy R, Zeng C H, et al. Metal–organic frameworks and their derivatives as electrode materials for potassium ion batteries: A review[J]. Coordination Chemistry Reviews,2021,446:214118. doi: 10.1016/j.ccr.2021.214118
    [44] Zhong M, Kong L J, Li N, et al. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries[J]. Coordination Chemistry Reviews,2019,388:172-201. doi: 10.1016/j.ccr.2019.02.029
    [45] Aravindan V, Gnanaraj J, Lee Y-S, et al. Insertion-type electrodes for nonaqueous li-ion capacitors[J]. Chemical Reviews, American Chemical Society,2014,114(23):11619-11635. doi: 10.1021/cr5000915
    [46] Burke A. Ultracapacitors: why, how, and where is the technology[J]. Journal of Power Sources,2000,91(1):37-50. doi: 10.1016/S0378-7753(00)00485-7
    [47] Kötz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta,2000,45(15):2483-2498.
    [48] Ma Y B, Li S N, An Y B, et al. A practical high-energy lithium-ion capacitor enabled by multiple conducting bridges triggered electrode current reallocation[J]. Energy Storage Materials,2023,62:102946. doi: 10.1016/j.ensm.2023.102946
    [49] Song S, Zhang X, An Y B, et al. Advanced fractional-order lithium-ion capacitor model with time-domain parameter identification method[J]. IEEE Transactions on Industrial Electronics,2022,69(12):13808-13817. doi: 10.1109/TIE.2021.3137597
    [50] Kang R, Zhu W Q, Li S, et al. Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor[J]. Rare Metals,2021,40(9):2424-2431. doi: 10.1007/s12598-020-01638-4
    [51] Dai Y Q, Li G C, Li X H, et al. Ultrathin porous graphitic carbon nanosheets activated by alkali metal salts for high power density lithium-ion capacitors[J]. Rare Metals,2020,39(12):1364-1373. doi: 10.1007/s12598-020-01509-y
    [52] Sui D, Wu M M, Liu Y Y, et al. High performance Li-ion capacitor fabricated with dual graphene-based materials[J]. Nanotechnology,2020,32(1):015403.
    [53] Sun Z X, Wang X H, Cai T W, et al. A composite with SiO x nanoparticles confined in carbon framework as an anode material for lithium ion battery[J]. RSC Advances,2016,6(47):40799-40805. doi: 10.1039/C6RA04885D
    [54] Huang J F, Lu X, Sun T, et al. Boosting high-voltage dynamics towards high-energy-density lithium-ion capacitors[J]. Energy & Environmental Materials,2023,6(4):e12505.
    [55] Sun C K, Zhang X, An Y B, et al. Molecularly chemical prelithiation of soft carbon towards high-performance lithium-ion capacitors[J]. Journal of Energy Storage,2022,56:106009. doi: 10.1016/j.est.2022.106009
    [56] Peng X W, Zhang L, Chen Z X, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes[J]. Advanced Materials,2019,31(16):1900341. doi: 10.1002/adma.201900341
    [57] Zhou W, Liu Z E, Chen W, et al. Thermal characteristics of pouch lithium–ion battery capacitors based on activated carbon and LiNi1/3Co1/3Mn1/3O2[J]. Journal of Energy Storage,2023,66:107474. doi: 10.1016/j.est.2023.107474
    [58] Wang L, Zhang X, Li C, et al. Cation-deficient T-Nb2O5/graphene hybrids synthesized via chemical oxidative etching of MXene for advanced lithium-ion capacitors[J]. Chemical Engineering Journal,2023,468:143507. doi: 10.1016/j.cej.2023.143507
    [59] Wei W P, Wang L, Liang C, et al. Interface engineering of CoSe2/N-doped graphene heterostructure with ultrafast pseudocapacitive kinetics for high-performance lithium-ion capacitors[J]. Chemical Engineering Journal,2023,474:145788. doi: 10.1016/j.cej.2023.145788
    [60] Li C, Zhang X, Lv Z S, et al. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors[J]. Chemical Engineering Journal,2021,414:128781. doi: 10.1016/j.cej.2021.128781
    [61] An Y B, Liu T Y, Li C, et al. A general route for mass-production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors[J]. Journal of Materials Chemistry A,2021,9(28):15654-15664. doi: 10.1039/D1TA03933D
    [62] Zhan C Z, Zeng X J, Lv R T, et al. Preparation of porous graphitic carbon and its dual-ion capacitance energy storage mechanism[J]. New Carbon Materials,2023,38(3):576-581. doi: 10.1016/S1872-5805(23)60727-9
    [63] Eguchi T, Tashima D, Fukuma M, et al. Activated carbon derived from Japanese distilled liquor waste: Application as the electrode active material of electric double-layer capacitors[J]. Journal of Cleaner Production,2020,259:120822. doi: 10.1016/j.jclepro.2020.120822
    [64] Lee J H, Shin W H, Lim S Y, et al. Modified graphite and graphene electrodes for high-performance lithium ion hybrid capacitors[J]. Materials for Renewable and Sustainable Energy,2014,3(1):1-8.
    [65] Zeiger M, Jäckel N, Mochalin V N, et al. Review: carbon onions for electrochemical energy storage[J]. Journal of Materials Chemistry A,2016,4(9):3172-3196. doi: 10.1039/C5TA08295A
    [66] Stoller M D, Murali S, Quarles N, et al. Activated graphene as a cathode material for Li-ion hybrid supercapacitors[J]. Physical Chemistry Chemical Physics,2012,14(10):3388-3391. doi: 10.1039/c2cp00017b
    [67] Liu W J, Zhang X, Xu Y N, et al. Recent Advances on Carbon-Based Materials for High Performance Lithium-Ion Capacitors[J]. Batteries & Supercaps,2021,4(3):407-428.
    [68] Li C, Zhang X, Wang K, et al. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors[J]. Journal of Energy Chemistry,2021,54(3):352-367.
    [69] Su L W, Zhou Z, Ren M M. Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries[J]. Chemical Communications,2010,46(15):2590-2592. doi: 10.1039/b925696b
    [70] Sun X Z, Geng L B, Yi S, et al. Effects of carbon black on the electrochemical performances of SiO x anode for lithium-ion capacitors[J]. Journal of Power Sources,2021,499:229936. doi: 10.1016/j.jpowsour.2021.229936
    [71] Dhand V, Yadav M, Kim S H, et al. A comprehensive review on the prospects of multi-functional carbon nano onions as an effective, high-performance energy storage material[J]. Carbon,2021,175:534-575. doi: 10.1016/j.carbon.2020.12.083
    [72] Jiao A J, Gao J F, He Z H, et al. Perovskite fluoride NaNiF3 with hollow micron sphere structure as anode for Li-ion hybrid capacitors[J]. Rare Metals,2022,41(10):3370-3380. doi: 10.1007/s12598-022-02047-5
    [73] Wang L, Zhang X, Li C, et al. Recent advances in transition metal chalcogenides for lithium-ion capacitors[J]. Rare Metals,2022,41(9):2971-2984. doi: 10.1007/s12598-022-02028-8
    [74] Sun C K, Zhang X, Li C, et al. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors[J]. Energy Storage Materials,2020,32:497-516. doi: 10.1016/j.ensm.2020.07.009
    [75] Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science,2014,7(5):1597.
    [76] Dubal D P, Ayyad O, Ruiz V, et al. Hybrid energy storage: the merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews, The Royal Society of Chemistry,2015,44(7):1777-1790. doi: 10.1039/C4CS00266K
    [77] Li C, Zhang X, Wang K, et al. Accordion-like titanium carbide (MXene) with high crystallinity as fast intercalative anode for high-rate lithium-ion capacitors[J]. Chinese Chemical Letters,2020,31(4):1009-1013. doi: 10.1016/j.cclet.2019.09.056
    [78] Sun X Z, Zhang X, Wang K, et al. Determination strategy of stable electrochemical operating voltage window for practical lithium-ion capacitors[J]. Electrochimica Acta,2022,428:140972. doi: 10.1016/j.electacta.2022.140972
    [79] Wang P L, Sun X Z, An Y B, et al. Additives to propylene carbonate-based electrolytes for lithium-ion capacitors[J]. Rare Metal,2022,41(4):1304-1313. doi: 10.1007/s12598-021-01887-x
    [80] An Y B, Li C, Sun X Z, et al. Deoxygenated porous carbon with highly stable electrochemical reaction interface for practical high-performance lithium-ion capacitors[J]. Journal of Physics D: Applied Physics,2022,55:045501. doi: 10.1088/1361-6463/ac2db3
    [81] Hayat A, Rauf S, Al Alwan B, et al. Recent advance in MOFs and MOF-based composites: synthesis, properties, and applications[J]. Materials Today Energy,2024,41:101542. doi: 10.1016/j.mtener.2024.101542
    [82] Sheberla D, Bachman J C, Elias J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials,2017,16(2):220-224. doi: 10.1038/nmat4766
    [83] Wang K B, Xun Q, Zhang Q C. Recent progress in metal-organic frameworks as active materials for supercapacitors[J]. EnergyChem,2020,2(1):100025. doi: 10.1016/j.enchem.2019.100025
    [84] Feng D W, Lei T, Lukatskaya M R, et al. Robust and conductive two-dimensional metal−organic frameworks with exceptionally high volumetric and areal capacitance[J]. Nature Energy,2018,3(1):30-36. doi: 10.1038/s41560-017-0044-5
    [85] Nam K W, Park S S, Dos Reis R, et al. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries[J]. Nature Communications,2019,10(1):1-10. doi: 10.1038/s41467-018-07882-8
    [86] Guo L Z, Sun F, Sun X, et al. Construction of 1D conductive Ni-MOF nanorods with fast Li+ kinetic diffusion and stable high-rate capacities as an anode for lithium ion batteries[J]. Nanoscale Advances,2019,1(12):4688-4691. doi: 10.1039/C9NA00616H
    [87] Yang C Y, Li A Y, Yu L, et al. A new promising Ni-MOF superstructure for high-performance supercapacitors[J]. Chemical Communications,2020,56(12):1803-1806. doi: 10.1039/C9CC09302H
    [88] Wang S, Guo Y Z, Wang F X, et al. Research progress on metal and covalent organic framework-based materials for high-performance supercapacitors[J]. New Carbon Materials,2022,37(1):109-135. doi: 10.1016/S1872-5805(22)60586-9
    [89] Sun F, Guo L Z, Sun X, et al. Conductive Co-based metal–organic framework nanowires: a competitive high-rate anode towards advanced Li-ion capacitors[J]. Journal of Materials Chemistry A,2019,7(43):24788-24791. doi: 10.1039/C9TA08788E
    [90] Wakamatsu K, Furuno S, Yamaguchi Y, et al. Electron storage performance of metal–organic frameworks based on tetrathiafulvalene–tetrabenzoate as cathode active materials in lithium- and sodium-ion batteries[J]. ACS Applied Energy Materials,2023,6(18):9124-9135. doi: 10.1021/acsaem.2c03537
    [91] Yan W, Su J, Yang Z M, et al. High-performance lithium-ion capacitors based on porosity-regulated zirconium metal−organic frameworks[J]. Small,2021,17(22):2005209. doi: 10.1002/smll.202005209
    [92] Ma L J, Luo C Y, Wang R N, et al. A tetrathiafulvalene-based bimetal–organic framework for a hybrid lithium-ion capacitor: the role of bimetallic centers in charge storage and stability[J]. ACS Energy Letters,2023,8(10):4427-4437. doi: 10.1021/acsenergylett.3c01677
    [93] Weng Y G, Zhang Z R, Ren Z H, et al. A high-performance pseudocapacitive negatrode for lithium-ion capacitor based on a tetrathiafulvalene-cobalt metal–organic framework[J]. Electrochimica Acta,2022,426:140828. doi: 10.1016/j.electacta.2022.140828
    [94] Xiao X H, Deng X L, Tian Y, et al. Ultrathin two-dimensional nanosheet metal-organic frameworks with high-density ligand active sites for advanced lithium-ion capacitors[J]. Nano Energy,2022,103:107797. doi: 10.1016/j.nanoen.2022.107797
    [95] Hu C, Ma K, Hu Y J, et al. Confining MoS2 nanocrystals in MOF-derived carbon for high performance lithium and potassium storage[J]. Green Energy & Environment,2021,6(1):75-82.
    [96] Wang C H, Liu C, Li J S, et al. Electrospun metal–organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors[J]. Chemical Communications,2017,53(10):1751-1754. doi: 10.1039/C6CC09832K
    [97] Pang J D, Yuan S, Qin J S, et al. Tuning the ionicity of stable metal–organic frameworks through ionic linker installation[J]. Journal of the American Chemical Society,2019,141(7):3129-3136. doi: 10.1021/jacs.8b12530
    [98] Liu S Y, Jia K L, Yang J, et al. Encapsulating flower-like MoS2 nanosheets into interlayer of nitrogen-doped graphene for high-performance lithium-ion storage[J]. Chemical Engineering Journal,2023,475:146181. doi: 10.1016/j.cej.2023.146181
    [99] Indra A, Song T, Paik U. Metal organic framework derived materials: progress and prospects for the energy conversion and storage[J]. Advanced Materials,2018,30(39):1705146. doi: 10.1002/adma.201705146
    [100] Kaneti Y V, Tang J, Salunkhe R R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal‐organic frameworks[J]. Advanced Materials,2017,29(12):1604898. doi: 10.1002/adma.201604898
    [101] Wu M C, Hu X, Zheng W Y, et al. Recent advances in porous carbon nanosheets for high-performance metal-ion capacitors[J]. Chemical Engineering Journal,2023,466:143077. doi: 10.1016/j.cej.2023.143077
    [102] Zhang J H, Chen Z Y, Xu T Z, et al. Vanadium nitride nanoparticles embedded in carbon matrix with pseudocapacitive behavior for high performance lithium-ion capacitors[J]. Rare Metals,2022,41(7):2460-2469. doi: 10.1007/s12598-021-01950-7
    [103] Yuan S, Lai Q H, Duan X, et al. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review[J]. Journal of Energy Storage,2023,61:106716. doi: 10.1016/j.est.2023.106716
    [104] Xin X Y, Zhao B, Yue J S, et al. A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors[J]. New Carbon Materials,2023,38(5):898-912. doi: 10.1016/S1872-5805(23)60760-7
    [105] Zhang L Y, Wang H, Qin N, et al. A high-rate and ultrastable anode for lithium ion capacitors produced by modifying hard carbon with both surface oxidation and intercalation[J]. New Carbon Materials,2022,37(5):1000-1010. doi: 10.1016/S1872-5805(22)60632-2
    [106] Liu H, Liu X X, Li W, et al. Porous carbon composites for next generation rechargeable lithium batteries[J]. Advanced Energy Materials,2017,7(24):1700283. doi: 10.1002/aenm.201700283
    [107] Wang C H, Kim J, Tang J, et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures[J]. Chem,2020,6(1):19-40. doi: 10.1016/j.chempr.2019.09.005
    [108] Li X X, Zheng S S, Jin L, et al. Metal-organic framework-derived carbons for battery applications[J]. Advanced Energy Materials,2018,8(23):1800716. doi: 10.1002/aenm.201800716
    [109] Chen C, Li X R, Li J X, et al. A high specific surface area porous carbon skeleton derived from MOF for high-performance Lithium-ion capacitors[J]. IOP Conference Series: Earth and Environmental Science,2021,844(1):012002. doi: 10.1088/1755-1315/844/1/012002
    [110] Yang J, Feng T T, Zhou H P, et al. Zinc oxide quantum dots embedded porous carbon nanosheets for high-capacity and ultrastable lithium-ion battery anodes[J]. Cell Reports Physical Science,2020,1(9):100186. doi: 10.1016/j.xcrp.2020.100186
    [111] Largeot C, Portet C, Chmiola J, et al. Relation between the ion size and pore size for an electric double-layer capacitor[J]. Journal of the American Chemical Society,2008,130(9):2730-2731. doi: 10.1021/ja7106178
    [112] Zhao Z J, Chao Y G, Wang F, et al. Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage[J]. Rare Metals,2022,41(4):1245-1254. doi: 10.1007/s12598-021-01850-w
    [113] Li B, Dai F, Xiao Q F, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science,2016,9(1):102-106.
    [114] Li X N, Zhu X B, Zhu Y C, et al. Porous nitrogen-doped carbon vegetable-sponges with enhanced lithium storage performance[J]. Carbon,2014,69:515-524. doi: 10.1016/j.carbon.2013.12.059
    [115] Yang J, Li T, Kashif K, et al. MOF derived carbon with ultra-high specific surface area and pore volume for lithium-ion capacitor cathodes[J]. IOP Conference Series: Earth and Environmental Science 2021, 844(1): 012003.
    [116] Asenbauer J, Eisenmann T, Kuenzel M, et al. The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites[J]. Sustainable Energy & Fuels,2020,4(11):5387-5416.
    [117] Bai P, Guo J Z, Wang M, et al. Interactions between lithium growths and nanoporous ceramic separators[J]. Joule, Elsevier,2018,2(11):2434-2449. doi: 10.1016/j.joule.2018.08.018
    [118] Vu A, Qian Y Q, Stein A. Porous electrode materials for lithium-ion batteries – how to prepare them and what makes them special[J]. Advanced Energy Materials,2012,2(9):1056-1085. doi: 10.1002/aenm.201200320
    [119] Zhang X H, Zhang K L, Zhang W K, et al. Carbon nano-onion-encapsulated ni nanoparticles for high-performance lithium-ion capacitors[J]. Batteries,2023,9(2):102. doi: 10.3390/batteries9020102
    [120] Bartelmess J, Giordani S. Carbon nano-onions (multi-layer fullerenes): chemistry and applications[J]. Beilstein Journal of Nanotechnology,2014,5(1):1980-1998.
    [121] Zeiger M, Jäckel N, N. Mochalin V, et al. Review: carbon onions for electrochemical energy storage[J]. Journal of Materials Chemistry A,2016,4(9):3172-3196. doi: 10.1039/C5TA08295A
    [122] Dimas Chandra Permana A, Omar A, Guillermo Gonzalez‐Martinez I, et al. MOF‐derived onion‐like carbon with superior surface area and porosity for high performance lithium‐ion capacitors[J]. Batteries & Supercaps,2022,5(5):e202100353.
    [123] Lu G F, Wang H L, Zheng Y L, et al. Metal-organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage[J]. Electrochimica Acta,2019,319:541-551. doi: 10.1016/j.electacta.2019.07.026
    [124] Xu Z Q, Li J X, Li X R, et al. An instantaneous metal organic framework to prepare ultra-high pore volume porous carbon for lithium ion capacitors[J]. Applied Surface Science,2021,565:150528. doi: 10.1016/j.apsusc.2021.150528
    [125] Shang P, Liu M, Mei Y Y, et al. Urea-mediated monoliths made of nitrogen-enriched mesoporous carbon nanosheets for high-performance aqueous zinc ion hybrid capacitors[J]. Small,2022,18(16):2108057. doi: 10.1002/smll.202108057
    [126] Lei D, Gao Y Y, Hou Z D, et al. A superior lithium-ion capacitor based on ultrafine mno/dual n-doped carbon anode and porous carbon cathode[J]. Batteries,2023,9(5):241. doi: 10.3390/batteries9050241
    [127] Hu S, Ge Z, Tan J, et al. Dual-functionally modified N/S doped hierarchical porous carbon and glycerol-engineered polyacrylonitrile carbon nanofibers combine for high-performance lithium-ion capacitors[J]. Journal of Power Sources,2023,558:232624. doi: 10.1016/j.jpowsour.2022.232624
    [128] Deng X L, Zou K Y, Momen R, et al. High content anion (S/Se/P) doping assisted by defect engineering with fast charge transfer kinetics for high-performance sodium ion capacitors[J]. Science Bulletin,2021,66(18):1858-1868. doi: 10.1016/j.scib.2021.04.042
    [129] Bai L Z, Jiang X B, Wu C, et al. Nanoporous carbons prepared with ZIF-8 as a template and activation agent for supercapacitors[J]. Materials Letters,2018,223:150-153. doi: 10.1016/j.matlet.2018.03.197
    [130] Han X Q, Han P X, Yao J H, et al. Nitrogen-doped carbonized polyimide microsphere as a novel anode material for high performance lithium ion capacitors[J]. Electrochimica Acta,2016,196:603-610. doi: 10.1016/j.electacta.2016.02.185
    [131] Yan T C, Wen F, Duan J F, et al. Fabricating tunable metal sulfides embedded with honeycomb-structured N-doped carbon matrices for high-performance lithium-ion capacitors[J]. Chemical Engineering Journal,2023,474:145839. doi: 10.1016/j.cej.2023.145839
    [132] Yi J D, Zhang M D, Hou Y, et al. N-doped carbon aerogel derived from a metal–organic framework foam as an efficient electrocatalyst for oxygen reduction[J]. Chemistry–An Asian Journal,2019,14(20):3642-3647. doi: 10.1002/asia.201900727
    [133] Li S N, Xu Y N, Liu W H, et al. Carbon nanocages bridged with graphene enable fast kinetics for dual-carbon lithium-ion capacitors[J]. Green Energy & Environment,2022,9(3):573-583.
    [134] Deng X Y, Li J J, Shan Z, et al. A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance[J]. Journal of Materials Chemistry A,2020,8(23):11617-11625. doi: 10.1039/D0TA02770G
    [135] Lei L L, Zheng Y W, Zhang X C, et al. A ZIF-8 host for dendrite-free zinc anodes and N, O dual-doped carbon cathodes for high-performance zinc-ion hybrid capacitors[J]. Chemistry–An Asian Journal,2021,16(15):2146-2153. doi: 10.1002/asia.202100526
    [136] Gao L, Zhang L L, Yang X L. N, S-codoped porous carbon nanosheets decorated with Fe3C nanoparticles as high-performance anode materials for lithium ion hybrid supercapacitors[J]. Rare Metals,2022,41(7):2517-2526. doi: 10.1007/s12598-021-01927-6
    [137] Shi L W, Zeng Q, Liu J J, et al. S, N co-doped porous carbon derived from metal-organic frameworks as cathode for lithium-ion capacitor[J]. Journal of Electroanalytical Chemistry,2023,944:117675. doi: 10.1016/j.jelechem.2023.117675
    [138] Li F F, Gao J F, He Z H, et al. Design and synthesis of cop/r-go hierarchical architecture: dominated pseudocapacitance, fasted kinetics features, and li-ion capacitor applications[J]. ACS Applied Energy Materials,2020,3(6):5448-5461. doi: 10.1021/acsaem.0c00440
    [139] Zhao X, Xu H, Hui Z Y, et al. Electrostatically assembling 2d nanosheets of mxene and mof-derivatives into 3d hollow frameworks for enhanced lithium storage[J]. Small,2019,15(47):1904255. doi: 10.1002/smll.201904255
    [140] Zheng S S, Li X R, Yan B Y, et al. Transition‐metal (Fe, Co, Ni) based metal‐organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials,2017,7(18):1602733. doi: 10.1002/aenm.201602733
    [141] Yu W J, Zhang L, Hou P X, et al. High reversible lithium storage capacity and structural changes of fe2o3 nanoparticles confined inside carbon nanotubes[J]. Advanced Energy Materials,2016,6(3):1501755. doi: 10.1002/aenm.201501755
    [142] Sun B, Lou S, Qian Z, et al. Pseudocapacitive Li+ storage boosts ultrahigh rate performance of structure-tailored CoFe2O4@Fe2O3 hollow spheres triggered by engineered surface and near-surface reactions[J]. Nano Energy,2019,66:104179. doi: 10.1016/j.nanoen.2019.104179
    [143] Tan J Y, Su J T, Wu Y J, et al. Hollow porous α-Fe2O3 nanoparticles as anode materials for high-performance lithium-ion capacitors[J]. ACS Sustainable Chemistry & Engineering,2021,9(3):1180-1192.
    [144] Jiang L, Liang F H, Zhang Z, et al. A novel cobalt chloride hydrate modified Co-MOF derived carbon microspheres as anode materials for lithium ion batteries[J]. Chemical Engineering Journal,2022,433:133568. doi: 10.1016/j.cej.2021.133568
    [145] Haeri Z, Ramezanzadeh M, Ramezanzadeh B. Ce-TA MOF assembled GO nanosheets reinforced epoxy composite for superior thermo-mechanical properties[J]. Journal of the Taiwan Institute of Chemical Engineers,2021,126:313-323. doi: 10.1016/j.jtice.2021.07.002
    [146] Yin Q W, He L W, Lian J Q, et al. The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors[J]. Carbon,2019,155:147-154. doi: 10.1016/j.carbon.2019.08.060
    [147] Dubin S, Gilje S, Wang K, et al. A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents[J]. ACS Nano,2010,4(7):3845-3852. doi: 10.1021/nn100511a
    [148] Dreyer D R, Todd A D, Bielawski C W. Harnessing the chemistry of graphene oxide[J]. Chemical Society Reviews,2014,43(15):5288-5301. doi: 10.1039/C4CS00060A
    [149] Raccichini R, Varzi A, Passerini S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials,2015,14(3):271-279. doi: 10.1038/nmat4170
    [150] Liu W J, An Y B, Zhang X, et al. General synthesis of graphene/metal oxide heterostructures for enhanced lithium storage performance[J]. Advanced Functional Materials, 2023: 2313274.
    [151] Hu M M, Zhang H, Hu T, et al. Emerging 2D MXenes for supercapacitors: status, challenges and prospects[J]. Chemical Society Reviews,2020,49(18):6666-6693. doi: 10.1039/D0CS00175A
    [152] Ghamsarizade R, Ramezanzadeh B, Mohammadloo HE. A review on recent advances in 2D-transition metal carbonitride-MXenes nano-sheets/polymer composites’ electromagnetic shields, mechanical and thermal properties[J]. Journal of the Taiwan Institute of Chemical Engineers,2023,144:104740. doi: 10.1016/j.jtice.2023.104740
    [153] Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [154] Zhao C H, Niu D J, Liu T T, et al. Hierarchical electrode constructed by carbon-coated metal-organic framework derivatives supported on two-dimensional Ti3C2 nanosheets for hybrid li-ion capacitors[J]. Journal of the Taiwan Institute of Chemical Engineers,2024,155:105290. doi: 10.1016/j.jtice.2023.105290
    [155] Dubal D P, Jayaramulu K, Sunil J, et al. Metal–organic framework (mof) derived electrodes with robust and fast lithium storage for li‐ion hybrid capacitors[J]. Advanced Functional Materials,2019,29(19):1900532. doi: 10.1002/adfm.201900532
    [156] Zhang Y T, Li S Y, Zhang N N, et al. A carbon catalyst doped with Co and N derived from the metal-organic framework hybrid (ZIF-8@ZIF-67) for efficient oxygen reduction reaction[J]. New Carbon Materials,2023,38(1):200-209. doi: 10.1016/S1872-5805(22)60609-7
    [157] Jia Q C, Zhang H J, Kong L B. Cobalt nanoparticles encapsulated by nitrogen-doped carbon framework as anode materials for high performance lithium-ion capacitors[J]. Journal of Electroanalytical Chemistry,2021,893:115326. doi: 10.1016/j.jelechem.2021.115326
    [158] Zou K Y, Cai P, Deng X L, et al. Revealing dual capacitive mechanism of carbon cathode toward ultrafast quasi-solid-state lithium ion capacitors[J]. Journal of Energy Chemistry,2021,60:209-221. doi: 10.1016/j.jechem.2020.12.039
    [159] Yi S, Wang L, Zhang X, et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2T x/rGO hybrid nanoflakes for advanced lithium-ion capacitors[J]. Science Bulletin,2021,66(9):914-924. doi: 10.1016/j.scib.2020.12.026
    [160] Zhang X, Wang L, Liu W J, et al. Recent advances in mxenes for lithium-ion capacitors[J]. ACS Omega,2020,5(1):75-82. doi: 10.1021/acsomega.9b03662
    [161] Bazan-Aguilar A, Ponce-Vargas M, Caycho C L, et al. Highly porous reduced graphene oxide-coated carbonized cotton fibers as supercapacitor electrodes[J]. ACS Omega,2020,5(50):32149-32159. doi: 10.1021/acsomega.0c02370
    [162] Li L, Zhang D, Gou Y C, et al. Lithium/sodium-ion capacitors based on 3D graphene-based materials[J]. Journal of Energy Storage,2021,40:102822. doi: 10.1016/j.est.2021.102822
    [163] Liu W J, Zhang X, Xu Y N, et al. 2d graphene/MnO heterostructure with strongly stable interface enabling high‐performance flexible solid‐state lithium‐ion capacitors[J]. Advanced Functional Materials,2022,32:2202342. doi: 10.1002/adfm.202202342
    [164] Gao X T, Liu Y T, Zhu X D, et al. V2O5 nanoparticles confined in three−dimensionally organized, porous nitrogen−doped graphene frameworks: flexible and free−standing cathodes for high performance lithium storage[J]. Carbon,2018,140:218-226. doi: 10.1016/j.carbon.2018.08.060
    [165] Zhu G Y, Chen T, Wang L, et al. High energy density hybrid lithium-ion capacitor enabled by Co3ZnC@N-doped carbon nanopolyhedra anode and microporous carbon cathode[J]. Energy Storage Materials,2018,14:246-252. doi: 10.1016/j.ensm.2018.04.009
    [166] Tang Y F, Li H W, Zhang R N, et al. Co3ZnC@NC material derived from ZIF-8 for lithium-ion capacitors[J]. ACS Omega,2021,6(43):28528-28537. doi: 10.1021/acsomega.1c02271
    [167] Mueller F, Bresser D, Chakravadhanula V S K, et al. Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries[J]. Journal of Power Sources,2015,299:398-402. doi: 10.1016/j.jpowsour.2015.08.018
    [168] Guo J X, Zhu H F, Sun Y F, et al. Flexible foams of graphene entrapped SnO2–Co3O4 nanocubes with remarkably large and fast lithium storage[J]. Journal of Materials Chemistry A,2016,4(41):16101-16107. doi: 10.1039/C6TA06626G
    [169] Yu S H, Lee D J, Park M, et al. Hybrid cellular nanosheets for high-performance lithium-ion battery anodes[J]. Journal of the American Chemical Society,2015,137(37):11954-11961. doi: 10.1021/jacs.5b03673
    [170] Wang X, Cao X Q, Bourgeois L, et al. N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries[J]. Advanced Functional Materials,2012,22(13):2682-2690. doi: 10.1002/adfm.201103110
    [171] Dai R L, Sun W W, Wang Y. Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries[J]. Electrochimica Acta,2016,217:123-131. doi: 10.1016/j.electacta.2016.08.051
    [172] Duan Y K, Li Z W, Zhang S C, et al. Metal-organic frameworks (MOFs)-derived Mn2SnO4@C anode based on dual lithium storage mechanism for high-performance lithium-ion capacitors[J]. Chemical Engineering Journal,2023,477:146914. doi: 10.1016/j.cej.2023.146914
    [173] Bian Y, Wang S J, Jin D D, et al. A general anion exchange strategy to transform metal-organic framework embedded nanofibers into high-performance lithium-ion capacitors[J]. Nano Energy,2020,75:104935. doi: 10.1016/j.nanoen.2020.104935
    [174] Bhat K S, Shenoy S, Nagaraja H S, et al. Porous cobalt chalcogenide nanostructures as high performance pseudo-capacitor electrodes[J]. Electrochimica Acta,2017,248:188-196. doi: 10.1016/j.electacta.2017.07.137
    [175] Zhang G J, Liu K H, Zhou J S. Cobalt telluride/graphene composite nanosheets for excellent gravimetric and volumetric Na-ion storage[J]. Journal of Materials Chemistry A,2018,6(15):6335-6343. doi: 10.1039/C8TA01265B
    [176] Zhang S G, Qiu L F, Zheng Y, et al. Rational design of core-shell znte@n-doped carbon nanowires for high gravimetric and volumetric alkali metal ion storage[J]. Advanced Functional Materials,2021,31(3):2006425. doi: 10.1002/adfm.202006425
    [177] Wang L, Wang Z H, Xie L L, et al. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(18):16619-16628.
    [178] Zhang H J, Jia Q C, Kong L B. Metal-organic framework-derived nitrogen-doped three-dimensional porous carbon loaded CoTe2 nanoparticles as anodes for high energy lithium-ion capacitors[J]. Journal of Energy Storage,2022,47:103617. doi: 10.1016/j.est.2021.103617
    [179] Wang L, Zhang X, Li C, et al. Recent advances in transition metal chalcogenides for lithium-ion capacitors[J]. Rare Metals,2022,41(9):2971-2984. doi: 10.1007/s12598-022-02028-8
    [180] Bo Z, Zheng Z W, Huang Y, et al. One-step MXene selenization-conversion into carbon-scaffold-anchored TiSe2 nanosheets enabling interlayer- and vacancy-mediated ion transport mechanisms for fast lithium-ion storage[J]. Chemical Engineering Journal,2023,473:145183. doi: 10.1016/j.cej.2023.145183
    [181] Hu X J, Liu X J, Chen K, et al. Core–shell MOF-derived N-doped yolk–shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries[J]. Journal of Materials Chemistry A,2019,7(18):11016-11037. doi: 10.1039/C9TA01999E
    [182] Wang L, Zhang X, Kong Y Y, et al. Metal–organic framework-derived CoSe2@N-doped carbon nanocubes for high-performance lithium-ion capacitors[J]. Rare Metals,2024,43:2150-2160. doi: 10.1007/s12598-023-02600-w
    [183] Ye J J, Ge F, Xia G, et al. CoP nanoflowers with hierarchical nanosheets as high-performance anodes for Li-ion and K-ion batteries[J]. Materials Letters,2021,282:128687. doi: 10.1016/j.matlet.2020.128687
    [184] Li S N, Xu Y N, Zhang X D, et al. CoP quantum dots embedded in carbon polyhedra through Co─P─C bonding enabling high‐energy lithium-ion capacitors[J]. Advanced Functional Materials,2024,34(24):2314870. doi: 10.1002/adfm.202314870
    [185] Yan W, Fan K, Zheng L M, et al. Cluster-bridging-coordinated bimetallic metal−organic framework as high-performance anode material for lithium-ion storage[J]. Small Structures,2021,2(12):2100122. doi: 10.1002/sstr.202100122
    [186] Pazhamalai P, Krishnamoorthy K, Sahoo S, et al. High-energy aqueous li-ion hybrid capacitor based on metal-organic-framework-mimicking insertion-type copper hexacyanoferrate and capacitive-type graphitic carbon electrodes[J]. Journal of Alloys and Compounds,2018,765:1041-1048. doi: 10.1016/j.jallcom.2018.06.249
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  22
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 录用日期:  2024-06-26
  • 修回日期:  2024-06-26
  • 网络出版日期:  2024-07-01

目录

    /

    返回文章
    返回