留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review on the N-doped carbon materials: Preparation, property and an application exemplification for sodium storage

YUAN Ren-lu HOU Ruo-yang SHANG Lei LIU Xue-wei LI Ang CHEN Xiao-hong SONG Huai-he

苑仁鲁, 侯若洋, 商蕾, 刘学伟, 李昂, 陈晓红, 宋怀河. 氮掺杂炭材料综述:制备、性质和储钠应用实例. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60877-2
引用本文: 苑仁鲁, 侯若洋, 商蕾, 刘学伟, 李昂, 陈晓红, 宋怀河. 氮掺杂炭材料综述:制备、性质和储钠应用实例. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60877-2
YUAN Ren-lu, HOU Ruo-yang, SHANG Lei, LIU Xue-wei, LI Ang, CHEN Xiao-hong, SONG Huai-he. A review on the N-doped carbon materials: Preparation, property and an application exemplification for sodium storage. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60877-2
Citation: YUAN Ren-lu, HOU Ruo-yang, SHANG Lei, LIU Xue-wei, LI Ang, CHEN Xiao-hong, SONG Huai-he. A review on the N-doped carbon materials: Preparation, property and an application exemplification for sodium storage. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60877-2

氮掺杂炭材料综述:制备、性质和储钠应用实例

doi: 10.1016/S1872-5805(24)60877-2
基金项目: 国家自然科学基金(52172036)和中央高校基本科研业务费专项资金(BH202419)提供资金支持
详细信息
    通讯作者:

    宋怀河, 教授. E-mail: songhh@mail.buct.edu.cn

  • 中图分类号: TQ127.1+1

A review on the N-doped carbon materials: Preparation, property and an application exemplification for sodium storage

Funds: The work was supported by the National Natural Science Foundation of China (52172036) and the Fundamental Research Funds for the Central Universities (BH202419)
More Information
  • 摘要: 杂原子掺杂作为一种强大的缺陷工程策略,可赋予炭材料独特的电子结构和高化学活性,对其结构调控和高性能应用潜力开发具有重要意义。氮原子具有与碳原子相似的原子半径、较高的电负性以及多种构型,因此氮掺杂炭材料得到了广泛的研究。本文主要综述了氮掺杂炭材料的制备方法和性质,并以其作为钠离子电池和钠离子电容器负极为例讨论了其应用潜力。重点详细介绍了原位和后处理的制备策略;讨论了氮含量和构型与结晶度、电导率、润湿性、化学反应活性以及储钠性能的关系。同时本文也介绍了本课题组的相关研究成果。这篇综述有望为氮掺杂炭材料的可控制备和结构设计提供有力的指导。
  • Figure  1.  Schematic of the overview about N-doped carbon materials

    Figure  2.  (a, b) Correlation between the N/C molar ratio and N content in N-doped carbon materials obtained at 800 and 1000 oC[35]. Copyright 2015, John Wiley and Sons. (c) N configurations and their evolution during pyrolysis[40]. Copyright 1995, Elsevier

    Figure  3.  In-suit preparation of N-doped carbon materials by direct pyrolysis: Schematic of the preparation process and structure evolution of (a) two-dimensional N-doped carbon nanosheets[57]. Copyright 2023, Elsevier. (b) SEM image of N-doped floral porous carbon[63]. Copyright 2017, Elsevier. (c) Chemical structures of ionic liquids used as precursors. (d) Schematic of the injecting pyrolysis system and the formation mechanism of N-doped carbon spheres using pyridine as a precursor[68]. Copyright 2015, American Chemical Society

    Figure  4.  In-situ preparation of N-doped carbon materials by chemical vapor deposition: (a) Schematic illustration of concurrent segregation technique for growing N-doped graphene[73]. Copyright 2011, John Wiley and Sons. Solvothermal: (b) Schematic of the synthesis process of N-doped carbon spheres[78]. Copyright 2020, Elsevier. (c) Schematic of a proposed mechanism for solvothermal synthesis of N-doped graphene via the reaction of CCl4 and Li3N[79]. Copyright 2011, American Chemical Society. Arc discharge: (d) schematic diagram of a device[86]. Copyright 2019, John Wiley and Sons

    Figure  5.  Some reports about post-treatment preparation of N-doped carbon materials. Heat treatment: (a) Schematic of the preparation and structure evolution process of N-doped hard carbon[90]. Copyright 2022, Elsevier. Plasma treatment: (b) A schematic of the atmospheric pressure plasma jet system[91]. Copyright 2015, Elsevier. (c) A schematic of N configuration and distribution (c1) and TEM image (c2) of the obtained N-doped graphene[94]. Copyright 2011, American Chemical Society. Ball-milling: (d) Schematic of the experimental procedure for N-doped graphene/carbon nanotube composite synthesis[99]. Copyright 2021, Elsevier. (e) Schematic of the preparation process of N-doped graphite[103]. Copyright 2017, Elsevier

    Figure  6.  Crystallinity: (a) XRD patterns of CNT-1000 and NC-CNT-1000[121]. Copyright 2018, John Wiley and Sons. (b) HRTEM images of (b1) CNTs, (b2) N-CNTs with 5.1 ± 0.5 at.% N and (b3) N-CNTs with 9.6 ± 0.5 at.% N, scale bars: 10 nm[122]. Copyright 2006, Elsevier. (c) ID/IG from Raman spectra of the N-doped porous carbons obtained from different pyrazine/sucrose ratio and silica nanoparticle sizes (10, 100 and 300 nm)[125]. Copyright 2014, John Wiley and Sons. Electronic conductivity: (d) The relationship between conductivity and aromaticity of NrGO materials[128]. Copyright 2021, American Chemical Society. (e) The conductivity of N-CNTs and N-CNFs with increased N content[131]. Copyright 2017, Elsevier. Wettability: Dynamic contact angles by water droplet of (f) the MEG (top) and N-MEG films (bottom)[133], and (g) HMCSs, N-HMCSs, N-SMCSs[134]. Copyright 2014, John Wiley and Sons. Copyright 2017, American Chemical Society. Chemical reactivity: (h) The relationships of reducing sites and total N content/N-6 content in N-doped carbon nanotubes [122], (i) TEM images of Cu particles adsorbed on the (i1) pristine and (i2) N-doped SWCNTs[141]. Copyright 2006, Elsevier. Copyright 2011, John Wiley and Sons

    Figure  7.  (a) Schematic of the preparation process and structure of N-HC, (b) rate performance of N-HC, HC, and N-C, and (c) cycling performance of N-NC[172]. Copyright 2019, Elsevier. (d) DFT computation of the volume change of hard carbon structure (top) and N-doped carbon materials (bottom) during sodiation[174]. Copyright 2019, Elsevier. (e) Schematic for preparation route and (f) the rate performance of N-FLG-T, (g) the comparison of rate performance of N-FLG-800 with reported carbon materials[181]. Copyright 2019, John Wiley and Sons. (h) Reaction models of the various N configurations with Na+[53]. Copyright 2018, John Wiley and Sons

    Table  1.   A summary of N content of reported N-doped carbon materials obtained by various preparation methods

    Methods Precursor/N source Preparation temperature (°C) N content Ref.
    EMIM-dca/3-MBP-dca 1000 10.4/8.9 wt. [36]
    Direct pyrolysis Corn cob core 1400 5.63 at.% [39]
    cuttlebone 600 7.2 at.% [45]
    Soybean milk 700 6.3 at.% [50]
    Vitamin B5 700/1000 9.4/2.0 at.% [51]
    Cu-hexamine coordination frameworks 800 20.38 at% [53]
    Co-hexamine coordination frameworks 500 16.54 at.% [54]
    Zn-hexamine coordination frameworks 800 16.25 at.% [55]
    Ni-hexamine coordination frameworks 800 15.91 at.% [56]
    Cu-melamine frameworks 800 17.73 at.% [57]
    Melamine-nickel nitrate 900 1.52 at.% [59]
    Polypyrrole fibers 600 13.93 wt.% [60]
    Polypyrrole fibers 650 8.8 at.% [61]
    Urea/PAN 700 19.06 wt.% [62]
    Polyimide 900 2.36 at.% [63]
    Pyridine 1000 3.80 at.% [68]
    Graphene quantum dots 800 7.2 at.% [113]
    Zn-chitosan aerogels 1000 3.37 at.% [114]
    Polyaniline microspheres 600 11.21 at.% [115]
    Aniline and pyrrole 800 9.74 at.% [116]
    C10H12N2O8Na4 700 9.55 at.% [117]
    Poly(p-phenylenediamine) hydrogel 800 5.47 at.% [118]
    Aniline and pyrrole 800 8.59 at.% [119]
    CVD CH4/pyridine/NH3 800 2.3 at.% [70]
    CH4/NH3 800 3.2 at.% [71]
    1,3,5-triazine 700/900 5.6/2.1 at.% [72]
    N2/graphene 0.95% [73]
    Dimethylformamide/Toluene/ethanol 850 3.35 at.% [74]
    Pyridine 850 6.92 at.% [74]
    Melamine-formaldehyde resin 900 7.4 wt.% [75]
    Acetonitrile 850 1.9-12.2 wt.% [76]
    Melamine 800 12.37 at.% [77]
    Solvothermal Li3N/CCl4 600 3 at.% [79]
    Chitosan 750 9.1 wt.% [80]
    Glucosamine 750 6.6 wt.% [80]
    Arc discharge N2 1 at.% [83]
    NH3/H2 1.5 at.% [84]
    N2/He 2.19 at.% [85]
    H2/He/NH3 2.25-3.43 at.% [86]
    Thermal treatment GO/NH3 800 6.8 at.% [87]
    Coal tar pitch/NH3 1000 4.17 wt.% [88]
    Sucrose/urea 900 6.2 at.% [89]
    Palm leaves/polyaniline 1000 4.6 at.% [90]
    Phenolic resin 600 10.6 at.% [120]
    Plasma treatment CH4/H2-O2/N2 3.8 at.% [92]
    CH4/H2/N2 2.4 at.% [93]
    GO/H2/N2 1.68-2.51% [94]
    Graphene/N2 8.7 at.% [95]
    Ferriporphyrin-GO/NH3 4.07 at.% [96]
    Ball milling Dicyandiamide/Coal tar pitch 800 14.68 at.% [98]
    Benzene-1,4-dialdehyde/p-Phenylenediamine 800/1000 4.3/1.1 at.% [100]
    Cyanuric chloride/ calcium carbide 1.7-16.1 wt.% [101]
    Graphite/urea 4 wt.% [103]
    MWCNTs-melamine/urea 0.2-9.6 wt.% [106]
    Chemical oxidation Betel nut/HNO3/thiourea 2.52 at.% [107]
    Zn/sucrose/HNO3 3.69 wt.% [108]
    Activated carbon/HNO3 (hydrothermal) 5.87% [109]
    Activated carbon/HNO3 6.17% [110]
    CNTs/HNO3 4.8 wt.% [111]
    Porous carbon/HNO3 6.66 at.% [112]
    下载: 导出CSV

    Table  2.   N-doped carbon materials for sodium storage

    Material N content N configuration Capacity Cycle performance Ref.
    N-doped carbon 20.38 at.% 65% N-6,
    6.5% N-5,
    23% N-Q,
    5.5% N-O
    212 mAh g−1@0.2 A g−1,
    142 mAh g−1@5 A g−1
    123 mAh g−1@5 A g−1, 500 cycles [53]
    N-rich hollow carbon-onion-
    constructed nanosheets
    16.54 at.% 59.11% N-6,
    16.95% N-5,
    17.96% N-Q,
    5.97% N-O
    293 mAh g−1@0.1 A g−1,
    131 mAh g−1@2 A g−1
    151 mAh g−1 @ 5 A g−1, 10000 cycles [54]
    N-rich porous carbon nanosheets 16.25 at.% 70.96% N-6,
    23.06% N-5,
    5.98% N-Q
    294 mAh g−1@0.1 A g−1,
    194 mAh g−1@10 A g−1
    170 mAh g−1@5 A g−1, 1000 cycles [55]
    N-doped carbon nanosheets 17.73 at.% 49% N-6,
    23% N-5,
    21% N-Q,
    7% N-O
    258.8 mAh g−1@0.05 A g−1,
    66.7 mAh g−1@10 A g−1
    135.5 mAh g−1@1 A g−1, 1000 cycles [57]
    N-doped carbon nanofiber 13.93 wt.% 172 mAh g−1@0.05 A g−1,
    73 mAh g−1@20 A g−1
    134.2 mAh g−1@0.2 A g−1, 200 cycles [60]
    N-doped activated porous
    carbon fibres
    8.8 at.% 296 mAh g−1@0.05 A g−1,
    72 mAh g−1@10 A g−1
    243 mAh g−1@0.05 A g−1, 100 cycles [61]
    N-doped carbon nanofiber 19.06 wt.%
    22.256 at.%
    53.45% N-6,
    30.47% N-5,
    16.08% N-Q
    354 mAh g−1@0.2 A g−1 201.5 mAh g−1@1 A g−1, 1000 cycles [62]
    Rose-like N-doped porous carbon 2.36 at.% 253.8 mAh g−1@0.05 A g−1,
    104.1 mAh g−1@3.2A g−1
    224 mAh g−1@0.1 A g−1, 100 cycles [63]
    N-doped graphene foams 6.8 at.% 717.4 mA h g−1@2C,
    137.7 mA h g−1@10C
    161.1 mA h g−1@1C, 150 cycles [87]
    N, O, P-codoped porous carbon 5.47 at.% 1.19 at.% N-6,
    0.88 at.% N-5,
    3.40 at.% N-Q
    332 mAh g−1@0.05 A g−1,
    139 mAh g−1@10 A g−1
    120 mAh g−1@5 A g−1, 1000 cycles [118]
    N-doped hard carbon 19% 188 mAh g−1@0.05 A g−1,
    90 mAh g−1@5 A g−1
    88 mAh g−1@1 A g−1, 5000 cycles [124]
    N doped carbon 6.54 at.% 19.7% N-6,
    80.3% N-5
    434.5 mAh g−1@0.05 A g−1,
    146.7 mAh g−1@2 A g−1
    73.8% capacity retention @1 A g−1, 1200 cycles [152]
    N doped carbon 4.81 at.% 32.1% N-6,
    66.9% N-Q
    301.4 mAh g−1@0.05A g−1 18.8% capacity retention @1 A g−1, 1200 cycles [152]
    N-doped porous carbon 17.72 at.% 334.6 mA h g−1@50 mA g−1,
    150.0 mA h g−1@2 A g−1
    101.4 mA h g−1@5 A g−1, 10000 cycles [172]
    flowerlike N-doped porous carbon 15.31 at.% 35.4% N-6,
    48.2% N-5,
    16.4% N-Q,
    453.7 mAh g−1@0.1 A g−1,
    201.2 mAh g−1@5 A g−1
    351.6 mAh g−1@ 0.5 A g−1, 5000 cycles [173]
    N-doped micron-sized spheres 7.11 at.% 266 mAh g−1@0.03 A g−1 [174]
    N-doped nano-sized spheres 9.12 at.% 286 mAh g−1@0.03 A g−1 245 mAh g−1@ 30 mA g−1, 200 cycles [174]
    N-rich few-layer graphene 19.3 at.% 42.93% N-6,
    29.16% N-5,
    27.91% N-Q
    264.3 mAh g−1@0.1 A g−1,
    56.6 mAh g−1@40 A g−1
    214.3 mAh g−1@ 0.5 A g−1, 2000 cycles [181]
    Edge-N enriched porous
    carbon nanosheets
    18.73 at.% 37.8% N-6,
    40.5% N-5,
    21.7% N-Q
    294.1 mAh g−1@0.1 A g−1,
    132.8 mAh g−1@10 A g−1
    129.9 mAh g−1@1 A g−1, 3000 cycles [191]
    N-doped micro-rod carbon 6.2 at.% 33.08% N-6,
    6.68% N-5,
    55.33% N-Q,
    4.91% N-O
    367.6 mAh g−1@0.05 A g−1,
    65.8 mAh g−1@5 A g−1
    161.5 mAh g−1@2 A g−1, 5000 cycles [192]
    N-doped Carbon nanotube 14.72 at.% 36.2% N-6,
    37.23% N-5,
    26.57% N-Q
    290.3 mAh g−1@0.05 A g−1,
    164.5 mAh g−1@10 A g−1
    164.5 mAh g−1@0.5 A g−1, 1000 cycles [193]
    下载: 导出CSV
  • [1] Jariwala D, Sangwan V K, Lauhon L J, et al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing[J]. Chemical Society Reviews,2013,42(7):2824-2860. doi: 10.1039/C2CS35335K
    [2] Ni J, Li Y. Carbon nanomaterials in different dimensions for electrochemical energy storage[J]. Advanced Energy Materials,2016,6(17):1600278. doi: 10.1002/aenm.201600278
    [3] Titirici M M, White R J, Brun N, et al. Sustainable carbon materials[J]. Chemical Society Reviews,2015,44(1):250-290. doi: 10.1039/C4CS00232F
    [4] Zhang M, Li J. Carbon nanotube in different shapes[J]. Materials Today,2009,12(6):12-18. doi: 10.1016/S1369-7021(09)70176-2
    [5] Qin G, Hao K-R, Yan Q-B, et al. Exploring T-carbon for energy applications[J]. Nanoscale,2019,11(13):5798-5806. doi: 10.1039/C8NR09557D
    [6] Novoselov K S, Fal′ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature,2012,490(7419):192-200. doi: 10.1038/nature11458
    [7] Wang G, Yu M, Feng X. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews,2021,50(4):2388-2443. doi: 10.1039/D0CS00187B
    [8] Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334(6058):928-935. doi: 10.1126/science.1212741
    [9] Choi N-S, Chen Z, Freunberger S A, et al. Challenges facing lithium batteries and electrical double-layer capacitors[J]. Angewandte Chemie International Edition,2012,51(40):9994-10024. doi: 10.1002/anie.201201429
    [10] Dwivedi N, Dhand C, Carey J D, et al. The rise of carbon materials for field emission[J]. Journal of Materials Chemistry C,2021,9(8):2620-2659. doi: 10.1039/D0TC05873D
    [11] Inagaki M, Kang F. Materials science and engineering of carbon: Fundamentals (second ed. )[M]. Tsinghua University Press and Elsevier, 2014.
    [12] Huo Y, Xiu S, Meng L-Y, et al. Solvothermal synthesis and applications of micro/nano carbons: A review[J]. Chemical Engineering Journal,2023,451:138572. doi: 10.1016/j.cej.2022.138572
    [13] Zhang Y, Tao L, Xie C, et al. Defect engineering on electrode materials for rechargeable batteries[J]. Advanced Materials,2020,32(7):1905923. doi: 10.1002/adma.201905923
    [14] Zhu J, Mu S. Defect engineering in carbon-based electrocatalysts: Insight into intrinsic carbon defects[J]. Advanced Functional Materials,2020,30(25):2001097. doi: 10.1002/adfm.202001097
    [15] Yan X, Shi W-W, Wang X-Z. Carbon based electrocatalysts for selective hydrogen peroxide conversion[J]. New Carbon Materials,2022,37(1):223-236. doi: 10.1016/S1872-5805(22)60582-1
    [16] Dong Y, Zhang S, Du X, et al. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling[J]. Advanced Functional Materials,2019,29(24):1901127. doi: 10.1002/adfm.201901127
    [17] Yuan R, Dong Y, Zhang S, et al. Efficient utilization of the active sites in defective graphene blocks through functionalization synergy for compact capacitive energy storage[J]. ACS Applied Materials & Interfaces,2021,13(48):57092-57099.
    [18] Chen Y, Xi B, Huang M, et al. Defect-selectivity and “order-in-disorder” engineering in carbon for durable and fast potassium storage[J]. Advanced Materials,2022,34(7):2108621. doi: 10.1002/adma.202108621
    [19] Wang H, Ye W, Yang Y, et al. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives[J]. Nano Energy,2021,85:105942. doi: 10.1016/j.nanoen.2021.105942
    [20] Chen D, Zhang W, Luo K, et al. Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization[J]. Energy & Environmental Science,2021,14(4):2244-2262.
    [21] Che X-G, Jin J, Zhang Y-X, et al. Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors[J]. New Carbon Materials,2023,38(6):1050-1058. doi: 10.1016/S1872-5805(23)60752-8
    [22] Majeed S, Zhao J, Zhang L, et al. Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials[J]. Nanotechnology Reviews,2013,2(6):615-635. doi: 10.1515/ntrev-2013-0007
    [23] Deng Y, Xie Y, Zou K, et al. Review on recent advances in nitrogen-doped carbons: Preparations and applications in supercapacitors[J]. Journal of Materials Chemistry A,2016,4(4):1144-1173. doi: 10.1039/C5TA08620E
    [24] Fan M, Feng Z-Q, Zhu C, et al. Recent progress in 2D or 3D N-doped graphene synthesis and the characterizations, properties, and modulations of N species[J]. Journal of Materials Science,2016,51(23):10323-10349. doi: 10.1007/s10853-016-0250-8
    [25] Inagaki M, Toyoda M, Soneda Y, et al. Nitrogen-doped carbon materials[J]. Carbon,2018,132:104-140. doi: 10.1016/j.carbon.2018.02.024
    [26] Jeon I-Y, Noh H-J, Baek J-B. Nitrogen-doped carbon nanomaterials: Synthesis, characteristics and applications[J]. Chemistry-an Asian Journal,2020,15(15):2282-2293. doi: 10.1002/asia.201901318
    [27] Vesel A, Zaplotnik R, Primc G, et al. A review of strategies for the synthesis of N-doped graphene-like materials[J]. Nanomaterials,2020,10(11):2286. doi: 10.3390/nano10112286
    [28] Inagaki M, Toyoda M, Soneda Y, et al. Nitrogen-doped carbon materials[J]. Carbon,2018,132:104-140. doi: 10.1016/j.carbon.2018.02.024
    [29] Wu J, Pan Z, Zhang Y, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries[J]. Journal of Materials Chemistry A,2018,6(27):12932-12944. doi: 10.1039/C8TA03968B
    [30] Shaker M, Ghazvini A A S, Shahalizade T, et al. A review of nitrogen-doped carbon materials for lithium-ion battery anodes[J]. New Carbon Materials,2023,38(2):247-278. doi: 10.1016/S1872-5805(23)60724-3
    [31] Yan L, Yu J, Houston J, et al. Biomass derived porous nitrogen doped carbon for electrochemical devices[J]. Green Energy & Environment,2017,2(2):84-99.
    [32] Wu K-H, Wang D-W, Su D-S, et al. A discussion on the activity origin in metal-free nitrogen-doped carbons for oxygen reduction reaction and their mechanisms[J]. ChemSusChem,2015,8(17):2772-2788. doi: 10.1002/cssc.201500373
    [33] Yang D-S, Chaudhari S, Rajesh K P, et al. Preparation of nitrogen-doped porous carbon nanofibers and the effect of porosity, electrical conductivity, and nitrogen content on their oxygen reduction performance[J]. Chemcatchem,2014,6(5):1236-1244. doi: 10.1002/cctc.201400035
    [34] Fujisawa K, Tojo T, Muramatsu H, et al. Enhanced electrical conductivities of N-doped carbon nanotubes by controlled heat treatment[J]. Nanoscale,2011,3(10):4359-4364. doi: 10.1039/c1nr10717h
    [35] Zhang S, Tsuzuki S, Ueno K, et al. Upper limit of nitrogen content in carbon materials[J]. Angewandte Chemie International Edition,2015,54(4):1302-1306. doi: 10.1002/anie.201410234
    [36] Paraknowitsch J P, Zhang J, Su D, et al. Ionic liquids as precursors for nitrogen-doped graphitic carbon[J]. Advanced Materials,2010,22(1):87-92. doi: 10.1002/adma.200900965
    [37] Zhang S, Miran M S, Ikoma A, et al. Protic ionic liquids and salts as versatile carbon precursors[J]. Journal of the American Chemical Society,2014,136(5):1690-1693. doi: 10.1021/ja411981c
    [38] Zhang S, Dokko K, Watanabe M. Direct synthesis of nitrogen-doped carbon materials from protic ionic liquids and protic salts: Structural and physicochemical correlations between precursor and carbon[J]. Chemistry of Materials,2014,26(9):2915-2926. doi: 10.1021/cm5006168
    [39] Song N-J, Ma C, Li P, et al. A novel method of enhancing the nitrogen content in biomass hard carbon: Pyrolysis-deposition-self-doping strategy[J]. International Journal of Energy Research,2022,46(7):1-8.
    [40] Pels J R, Kapteijn F, Moulijn J A, et al. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis[J]. Carbon,1995,33(11):1641-1653. doi: 10.1016/0008-6223(95)00154-6
    [41] Lee W J, Lim J, Kim S O. Nitrogen dopants in carbon nanomaterials: Defects or a new opportunity?[J]. Small Methods,2017,1(1-2):1600014. doi: 10.1002/smtd.201600014
    [42] Li X, Wang H, Robinson J T, et al. Simultaneous nitrogen doping and reduction of graphene oxide[J]. Journal of the American Chemical Society,2009,131(43):15939-15944. doi: 10.1021/ja907098f
    [43] Zhang J, Liu X, Chen W, et al. N configuration control of N-doped carbon for stabilizing Cu nanoparticles: The synergistic effects on oxy-carbonylation of methanol[J]. Carbon,2020,158:836-845. doi: 10.1016/j.carbon.2019.11.064
    [44] Lai L, Potts J R, Zhan D, et al. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction[J]. Energy & Environmental Science,2012,5(7):7936-7942.
    [45] Guo Y, Liu W, Wu R, et al. Marine-biomass-derived porous carbon sheets with a tunable N-doping content for superior sodium-ion storage[J]. ACS Applied Materials & Interfaces,2018,10(44):38376-38386.
    [46] Teng Y, Mo M, Li Y. Microtubular hard carbon derived from willow catkins as an anode material with enhanced performance for sodium-ion batteries[J]. Journal of Electrochemical Energy Conversion and Storage,2018,15(4):041010. doi: 10.1115/1.4040922
    [47] Zeng G, Zhou B, Yi L, et al. Green and facile fabrication of hierarchical N-doped porous carbon from water hyacinths for high performance lithium/sodium ion batteries[J]. Sustainable Energy & Fuels,2018,2(4):855-861.
    [48] Zhang D, Wang G, Xu L, et al. Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries[J]. Applied Surface Science,2018,451:298-305. doi: 10.1016/j.apsusc.2018.04.251
    [49] Gao C, Wang Q, Luo S, et al. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum[J]. Journal of Power Sources,2019,415:165-171. doi: 10.1016/j.jpowsour.2019.01.073
    [50] Guo S, Chen Y, Shi L, et al. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for high-performance lithium-ion Batteries[J]. Applied Surface Science,2018,437:136-143. doi: 10.1016/j.apsusc.2017.12.144
    [51] Wang L, Yang C, Dou S, et al. Nitrogen-doped hierarchically porous carbon networks: Synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery[J]. Electrochimica Acta,2016,219:592-603. doi: 10.1016/j.electacta.2016.10.050
    [52] Zhang W, Bu S, Yuan Q, et al. Controllable nitrogen-doping of nanoporous carbons enabled by coordination frameworks[J]. Journal of Materials Chemistry A,2019,7(2):647-656. doi: 10.1039/C8TA09817D
    [53] Liu S, Zhou J, Song H. Tailoring highly N-doped carbon materials from hexamine-based MOFs: Superior performance and new insight into the roles of N configurations in Na-ion storage[J]. Small,2018,14(12):1703548. doi: 10.1002/smll.201703548
    [54] Liu S, Yang B, Zhou J, et al. Nitrogen-rich carbon-onion-constructed nanosheets: An ultrafast and ultrastable dual anode material for sodium and potassium storage[J]. Journal of Materials Chemistry A,2019,7(31):18499-18509. doi: 10.1039/C9TA04699B
    [55] Liu S, Zhou J, Song H. 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage[J]. Advanced Energy Materials,2018,8(22):1800569. doi: 10.1002/aenm.201800569
    [56] Liu S, Zhou J, Song H. Thermal-exfoliated synthesis of N-rich carbon-based nanosheets from layered bulk crystals of a metal-hexamine framework[J]. Chemical Communications,2018,54(70):9825-9828. doi: 10.1039/C8CC04988B
    [57] Hou R, Yuan R, Tabish M, et al. Highly nitrogen-doped carbon nanosheets derived from Cu-melamine coordination framework for fast lithium and sodium storage[J]. Materials Research Bulletin,2023,164:112258. doi: 10.1016/j.materresbull.2023.112258
    [58] Li Y, Yang C, Zheng F, et al. High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage[J]. Journal of Materials Chemistry A,2018,6(37):17959-17966. doi: 10.1039/C8TA06652C
    [59] Oh Y J, Park J H, Park J S, et al. Fast-chargeable N-doped multi-oriented graphitic carbon as a Li-intercalation compound[J]. Energy Storage Materials,2022,44:416-424. doi: 10.1016/j.ensm.2021.10.036
    [60] Wang Z, Qie L, Yuan L, et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance[J]. Carbon,2013,55:328-334. doi: 10.1016/j.carbon.2012.12.072
    [61] Fu L, Tang K, Song K, et al. Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance[J]. Nanoscale,2014,6(3):1384-1389. doi: 10.1039/C3NR05374A
    [62] Chen C, Lu Y, Ge Y, et al. Synthesis of nitrogen-doped electrospun carbon nanofibers as anode material for high-performance sodium-ion batteries[J]. Energy Technology,2016,4(11):1440-1449. doi: 10.1002/ente.201600205
    [63] Zhao G, Zou G, Qiu X, et al. Rose-like N-doped porous carbon for advanced sodium storage[J]. Electrochimica Acta,2017,240:24-30. doi: 10.1016/j.electacta.2017.04.057
    [64] Yang Q, Zhang Z, Sun X-G, et al. Ionic liquids and derived materials for lithium and sodium batteries[J]. Chemical Society Reviews,2018,47(6):2020-2064. doi: 10.1039/C7CS00464H
    [65] Lee J S, Wang X, Luo H, et al. Fluidic carbon precursors for formation of functional carbon under ambient pressure based on ionic liquids[J]. Advanced Materials,2010,22(9):1004-1007. doi: 10.1002/adma.200903403
    [66] Wen Y, Tim-Patrick F, Markus. A. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases[J]. Journal of the American Chemical Society,2011,133(2):206-209. doi: 10.1021/ja108039j
    [67] Lee J S, Wang X, Luo H, et al. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids[J]. Journal of the American Chemical Society,2009,131(13):4596-4597. doi: 10.1021/ja900686d
    [68] Cao B, Liu H, Xing Z, et al. Preparation of nitrogen-doped carbon spheres by injecting pyrolysis of pyridine[J]. ACS Sustainable Chemistry & Engineering,2015,3(8):1786-1793.
    [69] Wang D, Zhou C, Cao B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials,2020,24:312-318. doi: 10.1016/j.ensm.2019.07.045
    [70] Zhang L L, Zhao X, Ji H, et al. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon[J]. Energy & Environmental Science,2012,5(11):9618.
    [71] Wei D, Li Y, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Letters,2009,9(5):1752-1758. doi: 10.1021/nl803279t
    [72] Lu Y-F, Lo S-T, Lin J-C, et al. Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport[J]. ACS Nano,2013,7(8):6522-6532. doi: 10.1021/nn402102y
    [73] Zhang C, Fu L, Liu N, et al. Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources[J]. Advanced Materials,2011,23(8):1020-1024. doi: 10.1002/adma.201004110
    [74] Alsawat M, Altalhi T, Santos A, et al. Facile and controllable route for nitrogen doping of carbon nanotubes composite membranes by catalyst-free chemical vapour deposition[J]. Carbon,2016,106(2016):295-305.
    [75] Cai J, Wu C, Yang S, et al. Templated and catalytic fabrication of N-doped hierarchical porous carbon-carbon nanotube hybrids as host for lithium-sulfur batteries[J]. ACS Appllied Materials & Interfaces,2017,9(39):33876-33886.
    [76] He M, Zhou S, Zhang J, et al. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism[J]. Journals of Physical Chemistry B,2005,109(19):9275-9279. doi: 10.1021/jp044868d
    [77] Li H F, Wu F, Wang C, et al. One-step chemical vapor deposition synthesis of 3D N-doped carbon nanotube/N-doped graphene hybrid material on nickel foam[J]. Nanomaterials,2018,8(9):1-12.
    [78] Khan M, Ahmad N, Lu K, et al. Nitrogen-doped carbon derived from onion waste as anode material for high performance sodium-ion battery[J]. Solid State Ionics,2020,346:115223. doi: 10.1016/j.ssi.2020.115223
    [79] Deng D, Pan X, Yu L, et al. Toward N-doped graphene via solvothermal synthesis[J]. Chemistry of Materials,2011,23(5):1188-1193. doi: 10.1021/cm102666r
    [80] Zhao L, Baccile N, Gross S, et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives[J]. Carbon,2010,48(13):3778-3787. doi: 10.1016/j.carbon.2010.06.040
    [81] Kroto H W, Heath J R, O’Brien S C, et al. C60: Buckminsterfullerene[J]. Nature,1985,318(6042):162-163. doi: 10.1038/318162a0
    [82] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature,1993,363(6430):603-605. doi: 10.1038/363603a0
    [83] Guan L, Cui L, Lin K, et al. Preparation of few-layer nitrogen-doped graphene nanosheets by DC arc discharge under nitrogen atmosphere of high temperature[J]. Applied Physics A,2010,102(2):289-294.
    [84] Shao X, Wang T, Gan Z, et al. Tailoring of N-doped graphite coated cobalt nanoparticles via arc discharge enables the high microwave absorption[J]. Carbon,2021,177(2021):171-180.
    [85] Wang B, Ma Y, Wu Y, et al. Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties[J]. Carbon,2009,47(8):2112-2115. doi: 10.1016/j.carbon.2009.02.027
    [86] Pham T V, Kim J G, Jung J Y, et al. High areal capacitance of N‐doped graphene synthesized by arc discharge[J]. Advanced Functional Materials,2019,29(48):1905511. doi: 10.1002/adfm.201905511
    [87] Xu J, Wang M, Wickramaratne N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Advanced Materials,2015,27(12):2042-2048. doi: 10.1002/adma.201405370
    [88] Hao M, Xiao N, Wang Y, et al. Pitch-derived N-doped porous carbon nanosheets with expanded interlayer distance as high-performance sodium-ion battery anodes[J]. Fuel Processing Technology,2018,177:328-335. doi: 10.1016/j.fuproc.2018.05.007
    [89] Wang Z, Li Y, Lv X-J. N-doped ordered mesoporous carbon as a high performance anode material in sodium ion batteries at room temperature[J]. RSC Advances,2014,4(107):62673-62677. doi: 10.1039/C4RA09084E
    [90] Nie W, Cheng H, Liu X, et al. Surface organic nitrogen-doping disordered biomass carbon materials with superior cycle stability in the sodium-ion batteries[J]. Journal of Power Sources,2022,522(2022):230994.
    [91] Lee B-J, Cho S-C, Jeong G-H. Atmospheric pressure plasma treatment on graphene grown by chemical vapor deposition[J]. Current Applied Physics,2015,15(5):563-568. doi: 10.1016/j.cap.2015.02.013
    [92] Evlashin S A, Fedorov F S, Dyakonov P V, et al. Role of nitrogen and oxygen in capacitance formation of carbon nanowalls[J]. Journal of Proteome Research,2020,11(12):4859-4865.
    [93] Evlashin S A, Maksimov Y M, Dyakonov P V, et al. N-doped carbon nanowalls for power sources[J]. Scientific Reports,2019,9(1):6716. doi: 10.1038/s41598-019-43001-3
    [94] Jeong H M, Lee J W, Shin W H, et al. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes[J]. Nano Letters,2011,11(6):2472-2477. doi: 10.1021/nl2009058
    [95] Lin Y-P, Ksari Y, Prakash J, et al. Nitrogen-doping processes of graphene by a versatile plasma-based method[J]. Carbon,2014,73:216-224. doi: 10.1016/j.carbon.2014.02.057
    [96] Li X, Zhang B, Yan X, et al. Fe, N-doped graphene prepared by NH3 plasma with a high performance for oxygen reduction reaction[J]. Catalysis Today,2019,337(2019):97-101.
    [97] Cai P, Momen R, Li M, et al. Functional carbon materials processed by NH3 plasma for advanced full-carbon sodium-ion capacitors[J]. Chemical Engineering Journal,2021,420:129647. doi: 10.1016/j.cej.2021.129647
    [98] Ju Z, Li P, Ma G, et al. Few layer nitrogen-doped graphene with highly reversible potassium storage[J]. Energy Storage Materials,2018,11:38-46. doi: 10.1016/j.ensm.2017.09.009
    [99] Fouda A N, Duraia E S M, Almaqwashi A A. Facile and scalable green synthesis of N-doped graphene/CNTs nanocomposites via ball milling[J]. Ain Shams Engineering Journal,2021,12(1):1017-1024. doi: 10.1016/j.asej.2020.04.011
    [100] Guo B, Ma R, Li Z, et al. Hierarchical N-doped porous carbons for Zn-Air batteries and supercapacitors[J]. Nano-micro Letters,2020,12(20):1-13.
    [101] Casco M E, Kirchhoff S, Leistenschneider D, et al. Mechanochemical synthesis of N-doped porous carbon at room temperature[J]. Nanoscale,2019,11(11):4712-4718. doi: 10.1039/C9NR01019J
    [102] Yuan R, Dong Y, Hou R, et al. Structural transformation of porous and disordered carbon during ball-milling[J]. Chemical Engineering Journal,2023,454:140418. doi: 10.1016/j.cej.2022.140418
    [103] Liu C, Liu X, Tan J, et al. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode[J]. Journal of Power Sources,2017,342(2017):157-164.
    [104] Jeon I-Y, Bae S-Y, Seo J-M, et al. Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling[J]. Advanced Functional Materials,2015,25(45):6961-6975. doi: 10.1002/adfm.201502214
    [105] Noh H J, Liu S, Yu S Y, et al. Edge‐NFx(x=1 or 2) protected graphitic nanoplatelets as a stable lithium storage material[J]. Batteries & Supercaps,2020,3(9):928-935.
    [106] Soares O S G P, Rocha R P, Gonçalves A G, et al. Easy method to prepare N-doped carbon nanotubes by ball milling[J]. Carbon,2015,91:114-121. doi: 10.1016/j.carbon.2015.04.050
    [107] Fang J, Guo D, Kang C, et al. Enhanced hetero‐elements doping content in biomass waste‐derived carbon for high performance supercapacitor[J]. International Journal of Energy Research,2019,43(14):8811-8821.
    [108] Wang B, Li Z, Zhang J, et al. N-doped 3D interconnected carbon bubbles as anode materials for lithium-ion and sodium-ion storage with excellent performance[J]. Journal of Nanoscience and Nanotechnology,2019,19(11):7301-7307. doi: 10.1166/jnn.2019.16655
    [109] Saka C. Sulphur and nitrogen-doped metal-free microalgal carbon catalysts for very active dehydrogenation of sodium borohydride in methanol[J]. International Journal of Hydrogen Energy,2021,46(35):18326-18337. doi: 10.1016/j.ijhydene.2021.03.001
    [110] Saka C. Oxygen and nitrogen-doped metal-free microalgae carbon nanoparticles for efficient hydrogen production from sodium borohydride in methanol[J]. International Journal of Hydrogen Energy,2021,46(52):26298-26307. doi: 10.1016/j.ijhydene.2021.05.111
    [111] Martin-Martinez M, Machado B F, Serp P, et al. Carbon nanotubes as catalysts for wet peroxide oxidation: The effect of surface chemistry[J]. Catalysis Today,2020,357(2020):332-340.
    [112] Qin L, Xiao Z, Zhai S, et al. Defect-rich N-doped porous carbon derived from alginate by HNO3 etching combined with a hard template method for high-performance supercapacitors[J]. Materials Chemistry and Physics,2021,260:124121. doi: 10.1016/j.matchemphys.2020.124121
    [113] Li J, Dong Y, Zhu J, et al. B, N co-doped carbon nanosheets derived from graphene quantum dots: Improving the pseudocapacitive performance by efficient trapping nitrogen[J]. Applied Surface Science,2020,529:147239. doi: 10.1016/j.apsusc.2020.147239
    [114] Liu L, Du B, Liu R, et al. N-doped hierarchically porous carbon aerogels by controlling the Zn-chitosan complex ratio for high-performance supercapacitors[J]. Energy & Fuels,2022,36(11):5920-5927.
    [115] Zhou C, Wang D, Yang H, et al. N, O co-doped urchin-like carbon microspheres as high-performance anode materials for lithium ion batteries[J]. Solid State Ionics,2021,361:115562. doi: 10.1016/j.ssi.2021.115562
    [116] Liu L, Lu Y, Wang S, et al. B, N stabilization effect on multicavity carbon microspheres for boosting durable and fast potassium-ion storage[J]. Journal of Colloid and Interface Science,2022,620:24-34. doi: 10.1016/j.jcis.2022.03.110
    [117] Qiu C, Kumar A, Qiu D, et al. Thiophene-sulfur doping in nitrogen-rich porous carbon enabling high-ICE/rate anode materials for potassium-ion storage[J]. Journal of Materials Chemistry A,2023,11(41):22187-22197. doi: 10.1039/D3TA04468H
    [118] Zhou C, Wang D, Li A, et al. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries[J]. Chemical Engineering Journal,2020,380:122457. doi: 10.1016/j.cej.2019.122457
    [119] Liu L, Sun X, Dong Y, et al. N-doped hierarchical porous hollow carbon spheres with multi-cavities for high performance Na-ion storage[J]. Journal of Power Sources,2021,506:230170. doi: 10.1016/j.jpowsour.2021.230170
    [120] Song R, Dong Y, Zhang D, et al. Nitrogen-doped porous carbon nanosheets with ultrahigh capacity and quasicapacitive energy storage performance for lithium and sodium storage applications[J]. Energy Technology,2021,9(9):2100309. doi: 10.1002/ente.202100309
    [121] Qiao M, Meysami S S, Ferrero G A, et al. Low-cost chitosan-derived N-doped carbons boost electrocatalytic activity of multiwall carbon nanotubes[J]. Advanced Functional Materials,2018,28(16):1707284. doi: 10.1002/adfm.201707284
    [122] Maldonado S, Morin S, Stevenson K J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping[J]. Carbon,2006,44(8):1429-1437. doi: 10.1016/j.carbon.2005.11.027
    [123] Lee W H, Moon J H. Monodispersed N-doped carbon nanospheres for supercapacitor application[J]. ACS Appllied Materials & Interfaces,2014,6(16):13968-13976.
    [124] Wang X, He S, Chen F, et al. Nitrogen-doped hard carbon as symmetric electrodes for sodium-ion capacitor[J]. Energy & Fuels,2020,34(10):13144-13148.
    [125] Morelos-Gómez A, Mani-González P G, Aliev A E, et al. Controlling the optical, electrical and chemical properties of carbon inverse opal by nitrogen doping[J]. Advanced Functional Materials,2014,24(18):2612-2619. doi: 10.1002/adfm.201303391
    [126] Yang, Xu, Tomita A, et al. Double coaxial structure and dual physicochemical properties of carbon nanotubes composed of stacked nitrogen-doped and undoped multiwalls[J]. Chemistry of Materials,2005,17(11):2940-2945. doi: 10.1021/cm047830m
    [127] Wiggins-Camacho J D, Stevenson K J. Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes[J]. The Journal of Physical Chemistry C,2009,113(44):19082-19090. doi: 10.1021/jp907160v
    [128] Roh J S, Yoon H W, Zhang L, et al. Carbon lattice structures in nitrogen-doped reduced graphene oxide: implications for carbon-based electrical conductivity[J]. ACS Applied Nano Materials,2021,4(8):7897-7904. doi: 10.1021/acsanm.1c01228
    [129] Li X, Tang T, Li M, et al. Photochemical doping of graphene oxide thin films with nitrogen for electrical conductivity improvement[J]. Journal of Materials Science: Materials in Electronics,2014,26(3):1770-1775.
    [130] Pan Z, Ren J, Guan G, et al. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries[J]. Advanced Energy Materials,2016,6(11):1600271. doi: 10.1002/aenm.201600271
    [131] Podyacheva O Y, Cherepanova S V, Romanenko A I, et al. Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties[J]. Carbon,2017,122:475-483. doi: 10.1016/j.carbon.2017.06.094
    [132] Ismagilov Z R, Shalagina A E, Podyacheva O Y, et al. Structure and electrical conductivity of nitrogen-doped carbon nanofibers[J]. Carbon,2009,47(8):1922-1929. doi: 10.1016/j.carbon.2009.02.034
    [133] Zhai P, Wei T C, Chang Y H, et al. High electrocatalytic and wettable nitrogen-doped microwave-exfoliated graphene nanosheets as counter electrode for dye-sensitized solar cells[J]. Small,2014,10(16):3347-3353. doi: 10.1002/smll.201400628
    [134] Li Y, Qi J, Li J, et al. Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization[J]. ACS Sustainable Chemistry & Engineering,2017,5(8):6635-6644.
    [135] Gao Z, Liu X, Chang J, et al. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor[J]. Journal of Power Sources,2017,337(2017):25-35.
    [136] Hsu C-C, Tu Y-H, Yang Y-H, et al. Improved performance and long-term stability of activated carbon doped with nitrogen for capacitive deionization[J]. Desalination,2020,481(2020):114362.
    [137] Muramatsu H, Takahashi M, Kang C S, et al. Synthesis of outer tube-selectively nitrogen-doped double-walled carbon nanotubes by nitrogen plasma treatment[J]. Nanoscale,2018,10(34):15938-15942. doi: 10.1039/C8NR03745K
    [138] Martin-Martinez M, Ribeiro R S, Machado B F, et al. Role of nitrogen doping on the performance of carbon nanotube catalysts: a catalytic wet peroxide oxidation application[J]. Chemcatchem,2016,8(12):2068-2078. doi: 10.1002/cctc.201600123
    [139] Xu F, Zhai Y, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie International Edition,2020,59(44):19460-19467. doi: 10.1002/anie.202005118
    [140] Li G, Mao K, Liu M, et al. Achieving ultrahigh volumetric energy storage by compressing nitrogen and sulfur dual-doped carbon nanocages via capillarity[J]. Advanced Materials,2020,32(52):2004632. doi: 10.1002/adma.202004632
    [141] Liu Y, Jin Z, Wang J, et al. Nitrogen-doped single-walled carbon nanotubes grown on substrates: evidence for framework doping and their enhanced properties[J]. Advanced Functional Materials,2011,21(5):986-992. doi: 10.1002/adfm.201002086
    [142] Obata S, Saiki K. Growth temperature dependence of nitrogen doped graphene structure on Pt (111) and analysis of its reactivity with oxygen[J]. RSC Advance,2018,8(60):34309-34313. doi: 10.1039/C8RA06962J
    [143] Carraro G, Celasco E, Smerieri M, et al. Chemisorption of CO on N-doped graphene on Ni(111)[J]. Applied Surface Science,2018,428(2018):775-780.
    [144] Liu X, Li X, Li Y, et al. Regulating the bonding nature and location of C-F bonds in fluorinated graphene by doping nitrogen atoms[J]. Industrial & Engineering Chemistry Research,2021,60(2):875-884.
    [145] Sood P, Kim K C, Jang S S. Electrochemical and electronic properties of nitrogen doped fullerene and its derivatives for lithium-ion battery applications[J]. Journal of Energy Chemistry,2018,27(2):528-534. doi: 10.1016/j.jechem.2017.11.009
    [146] Kropp T, Mavrikakis M. Transition metal atoms embedded in graphene: How nitrogen doping increases CO oxidation activity[J]. ACS Catalysis,2019,9(8):6864-6868. doi: 10.1021/acscatal.9b01944
    [147] Singh S K, Takeyasu K, Nakamura J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials[J]. Advanced Materials,2019,31(13):1804297. doi: 10.1002/adma.201804297
    [148] Wu B, Meng H, Morales D M, et al. Nitrogen-rich carbonaceous materials for advanced oxygen electrocatalysis: synthesis, characterization, and activity of nitrogen sites[J]. Advanced Functional Materials,2022,32(31):2204137. doi: 10.1002/adfm.202204137
    [149] Zhang W, Sun M, Yin J, et al. Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions[J]. Nano Energy,2021,87:106184. doi: 10.1016/j.nanoen.2021.106184
    [150] Li Z, Yang Y, Ding G, et al. Optimizing the nitrogen configuration in interlayer-expanded carbon materials via sulfur-bridged bonds toward remarkable energy storage performances[J]. Journal of Materials Chemistry A,2022,10(18):10033-10042. doi: 10.1039/D2TA00608A
    [151] Chao H, Zhu Y, Luo X, et al. Regulation of nitrogen configurations and content in 3D porous carbons for improved lithium storage[J]. Dalton Trans,2021,50(40):14390-14399. doi: 10.1039/D1DT02133H
    [152] Feng X, Bai Y, Zheng L, et al. Effect of different nitrogen configurations on sodium storage properties of carbon anodes for sodium ion batteries[J]. ACS Applied Materials & Interfaces,2021,13(47):56285-56295.
    [153] Zhou C, Chen X, Liu H, et al. Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors[J]. Electrochimica Acta,2017,236:53-60. doi: 10.1016/j.electacta.2017.03.107
    [154] Zhou C, Li A, Cao B, et al. The non-ignorable impact of surface oxygen groups on the electrochemical performance of N/O dual-doped carbon anodes for sodium ion batteries[J]. Journal of The Electrochemical Society,2018,165(7):A1447-A1454. doi: 10.1149/2.1061807jes
    [155] Kong M, Song H, Zhou J. Metal-organophosphine framework-derived N, P-codoped carbon-confined Cu3P nanopaticles for superb Na-ion storage[J]. Advanced Energy Materials,2018,8(27):1801489. doi: 10.1002/aenm.201801489
    [156] Liu Y, Wang X, Dong Y, et al. Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries[J]. Journal of Materials Chemistry A,2014,2(40):16832-16835. doi: 10.1039/C4TA03531C
    [157] Qi X, Huang K, Wu X, et al. Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties[J]. Carbon,2018,131(2018):79-85.
    [158] Lee K S, Lee W J, Park N G, et al. Transferred vertically aligned N-doped carbon nanotube arrays: Use in dye-sensitized solar cells as counter electrodes[J]. Chemical Communications,2011,47(14):4264-4266. doi: 10.1039/c1cc10471c
    [159] Ou J, Gong C, Wang M, et al. Highly efficient ZIF-8/graphene oxide derived N-doped carbon sheets as counter electrode for dye-sensitized solar cells[J]. Electrochimica Acta,2018,286:212-218. doi: 10.1016/j.electacta.2018.08.038
    [160] Wang X, Yang J, Liu S, et al. Accelerating sulfur redox chemistry by atomically dispersed Zn-N4 sites coupled with pyridine-N defects on porous carbon sheets[J]. Small,2024,20(2):2305508. doi: 10.1002/smll.202305508
    [161] Tarascon J-M. Na-ion versus Li-ion batteries: Complementarity rather than competitiveness[J]. Joule,2020,4(8):1616-1620. doi: 10.1016/j.joule.2020.06.003
    [162] Chen X, Tian J, Li P, et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism[J]. Advanced Energy Materials,2022,12(24):2200886. doi: 10.1002/aenm.202200886
    [163] Kim H, Hyun J C, Kim D-H, et al. Revisiting lithium- and sodium-ion storage in hard carbon anodes[J]. Advanced Materials,2023,35(12):2209128. doi: 10.1002/adma.202209128
    [164] Yuan M, Meng C, Li A, et al. A general multi-interface strategy toward densified carbon materials with enhanced comprehensive electrochemical performance for Li/Na-ion batteries[J]. Small,2022,18(16):2105738. doi: 10.1002/smll.202105738
    [165] Xie F, Xu Z, Guo Z, et al. Disordered carbon anodes for Na-ion batteries—quo vadis?[J]. Science China Chemistry,2021,64(10):1679-1692. doi: 10.1007/s11426-021-1074-8
    [166] Sun N, Qiu J, Xu B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate[J]. Advanced Energy Materials,2022,12(27):2200715. doi: 10.1002/aenm.202200715
    [167] Chen X, Liu C, Fang Y, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy,2022,4(6):1133-1150. doi: 10.1002/cey2.196
    [168] Wu J, Chen T, Liu S, et al. Preparation of pitch-based hard carbon by bi-functional activation strategy for sodium-ion batteries[J]. CIESC Journal,2024,75(3):1019-1027.
    [169] Xie F, Niu Y, Zhang Q, et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries[J]. Angewandte Chemie International Edition,2022,61(11):e202116394. doi: 10.1002/anie.202116394
    [170] Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: From aqueous to lithium to sodium[J]. Chemical Reviews,2018,118(14):6457-6498. doi: 10.1021/acs.chemrev.8b00116
    [171] Zuo W, Li R, Zhou C, et al. Battery-supercapacitor hybrid devices: Recent progress and future prospects[J]. Advanced Science,2017,4(7):1600539. doi: 10.1002/advs.201600539
    [172] Hu X, Sun X, Yoo S J, et al. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries[J]. Nano Energy,2019,56:828-839. doi: 10.1016/j.nanoen.2018.11.081
    [173] Su D, Huang M, Zhang J, et al. High N-doped hierarchical porous carbon networks with expanded interlayers for efficient sodium storage[J]. Nano Research,2020,13(10):2862-2868. doi: 10.1007/s12274-020-2944-0
    [174] Agrawal A, Janakiraman S, Biswas K, et al. Understanding the improved electrochemical performance of nitrogen-doped hard carbons as an anode for sodium ion battery[J]. Electrochimica Acta,2019,317:164-172. doi: 10.1016/j.electacta.2019.05.158
    [175] Liu J, Zhang Y, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived n-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials,2019,31(24):1901261. doi: 10.1002/adma.201901261
    [176] Wang S, Fang Y, Wang X, et al. Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage[J]. Angewandte Chemie International Edition,2019,58(3):760-763. doi: 10.1002/anie.201810729
    [177] Fang Y, Yu X-Y, Lou X W. Bullet-like Cu9S5 hollow particles coated with nitrogen-doped carbon for sodium-ion batteries[J]. Angewandte Chemie International Edition,2019,58(23):7744-7748. doi: 10.1002/anie.201902988
    [178] Ji K, Liang G, Shen Y, et al. Ordered macroporous graphenic carbon-based framework materials and their low-temperature co-sacrificial template synthesis mechanism[J]. Cell Reports Physical Science,2023,4(2):101283. doi: 10.1016/j.xcrp.2023.101283
    [179] Liu Z, Wang J, Bi R, et al. Ultrasmall NiS2 nanocrystals embedded in ordered macroporous graphenic carbon matrix for efficiently pseudocapacitive sodium storage[J]. Transactions of Tianjin University,2023,29(2):89-100. doi: 10.1007/s12209-022-00338-7
    [180] Ge P, Hou H, Li S, et al. Tailoring rod-like FeSe2 coated with nitrogen-doped carbon for high-performance sodium storage[J]. Advanced Functional Materials,2018,28(30):1801765. doi: 10.1002/adfm.201801765
    [181] Liu J, Zhang Y, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials,2019,31(24):1901261. doi: 10.1002/adma.201901261
    [182] Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters,2012,12(7):3783-3787. doi: 10.1021/nl3016957
    [183] Wang H-G, Wu Z, Meng F-L, et al. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries[J]. ChemSusChem,2013,6(1):56-60. doi: 10.1002/cssc.201200680
    [184] Bai Y, Wang Z, Wu C, et al. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery[J]. ACS Applied Materials & Interfaces,2015,7(9):5598-5604.
    [185] Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7(12):11004-11015. doi: 10.1021/nn404640c
    [186] Tang K, Fu L, White R J, et al. Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J]. Advanced Energy Materials,2012,2(7):873-877. doi: 10.1002/aenm.201100691
    [187] Hou H, Banks C E, Jing M, et al. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life[J]. Advanced Materials,2015,27(47):7861-7866. doi: 10.1002/adma.201503816
    [188] Wu L, Buchholz D, Vaalma C, et al. Apple-biowaste-derived hard carbon as a powerful anode material for Na-ion batteries[J]. ChemElectroChem,2016,3(2):292-298. doi: 10.1002/celc.201500437
    [189] Li Z, Jian Z, Wang X, et al. Hard carbon anodes of sodium-ion batteries: Undervalued rate capability[J]. Chemical Communications, 2017, 53(17): 2610-2613. D
    [190] Cao L, Hui W, Xu Z, et al. Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds,2017,695:632-637. doi: 10.1016/j.jallcom.2016.11.135
    [191] Xu C, Yang W, Ma G, et al. Edge-nitrogen enriched porous carbon nanosheets anodes with enlarged interlayer distance for fast charging sodium-ion batteries[J]. Small,2022,18(48):2204375. doi: 10.1002/smll.202204375
    [192] Sun J, Sun Y, Oh J A S, et al. Insight into the structure-capacity relationship in biomass derived carbon for high-performance sodium-ion batteries[J]. Journal of Energy Chemistry,2021,62:497-504. doi: 10.1016/j.jechem.2021.04.009
    [193] Zhao Y, Hu Z, Fan C, et al. Constructing high-performance N-doped carbon nanotubes anode by tuning interlayer spacing and the compatibility mechanism with ether electrolyte for sodium-ion batteries[J]. Chemical Engineering Journal,2022,446:137427. doi: 10.1016/j.cej.2022.137427
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-03
  • 录用日期:  2024-07-09
  • 修回日期:  2024-07-08
  • 网络出版日期:  2024-07-10

目录

    /

    返回文章
    返回