A review of porous carbons produced by template methods for supercapacitor applications
-
Graphical Abstract
-
Abstract
Porous carbons are widely used in the energy storage and conversion field because of their excellent electrical conductivity, high specific surface area and superb electrochemical stability. The template method is one of the most advanced approaches to prepare porous carbons with well-defined pore structures and suitable pore size distributions. The pore formation mechanism and structure-property relationships of porous carbons obtained by template methods for supercapacitor electrodes are summarized. They include hard templates (magnesium-based, silica-based, zinc-based, calcium-based templates), soft templates (conventional soft template, ionic liquids, deep eutectic solvent) and self-templates (biomass, MOFs). Furthermore, the problems in tailoring the pore texture of porous carbons are clarified, and proposals are made for future research.
-
-