Preparation and lithium storage of anthracite-based graphite anode materials
-
-
Abstract
Several graphite samples with different microstructures were prepared from anthracite using industrial silicon powders as catalyst. The mechanism of the catalytic reaction and the electrochemical properties of the prepared coal-based graphite in lithium anodes were investigated. The correlation between the microstructure and the properties of the graphite is discussed. Results show that the sample with 5% silicon (G-2800-5%) has the best lithium storage. It has the well-developed graphitic structure with a degree of graphitization of 91.5% as determined from the interlayer spacing. When used as an anode material, a high reversible capacity of 369.0 mAh g−1 was achieved at 0.1 A g−1 and its reversible capacity was 209.0 mAh g−1 at a current density of 1 A g−1. It also exhibits good cycling stability with a capacity retention of 92.2% after 200 cycles at 0.2 A g−1. The highly developed graphite structure, which is favorable for the formation of a stable SEI and therefore reduces lithium ion loss, is responsible for the superior electrochemical performance.
-
-