TANG Song-yuan, WANG Yong-sheng, YUAN Ya-fei, BA Ya-qi, WANG Li-qiu, HAO Guang-ping, LU An-hui. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting[J]. New Carbon Mater., 2022, 37(1): 237-244. DOI: 10.1016/S1872-5805(22)60576-6
Citation: TANG Song-yuan, WANG Yong-sheng, YUAN Ya-fei, BA Ya-qi, WANG Li-qiu, HAO Guang-ping, LU An-hui. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting[J]. New Carbon Mater., 2022, 37(1): 237-244. DOI: 10.1016/S1872-5805(22)60576-6

Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting

  • Atmospheric water harvesting (AWH) is considered a promising technique to address the problem of global water shortage. Adsorption-based AWH technology, has the advantages of a simple device structure, high energy efficiency, wide application range, etc., and has attracted much attention. For the adsorption, one of the key issues is to find high-performance porous adsorbents. Porous carbons have exceptional stability, high porosity and low cost, but are usually highly hydrophobic with a low affinity for polar water molecules. A class of monolithic porous carbons with good hydrophilicity was prepared by the pyrolysis of composites consisting of a metal-organic framework in a resorcinol-formaldehyde resin matrix, in which the metal-organic parts developed polar sites in the final products. AWH tests showed that in a relative humidity of 40%-80%, the water capture capacity of the adsorbents reached 20%.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return