WEI Yu-chen, ZHOU Jian, YANG Lei, GU Jing, CHEN Zhi-peng, HE Xiao-jun. N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials[J]. New Carbon Mater., 2022, 37(4): 707-715. DOI: 10.1016/S1872-5805(22)60595-X
Citation: WEI Yu-chen, ZHOU Jian, YANG Lei, GU Jing, CHEN Zhi-peng, HE Xiao-jun. N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials[J]. New Carbon Mater., 2022, 37(4): 707-715. DOI: 10.1016/S1872-5805(22)60595-X

N/S co-doped interconnected porous carbon nanosheets as high-performance supercapacitor electrode materials

  • The synthesis of porous carbon nanosheets without acid treatment for high-performance supercapacitors (SCs) is difficult. We report the construction of N/S co-doped porous carbon nanosheets (NS-PCNs) from coal tar pitch (CTP), using Na2S2O3·5H2O as the sulfur source and K2CO3 as an activator, under flowing ammonia at high temperature. NS-IPCN800 prepared at 800 °C is composed of two-dimensional (2D) nanosheets with abundant pores and an interconnected 3D carbon skeleton. The abundant microspores increase the number of active sites for electrolyte ion adsorption and small mesopores act as channels for fast ion transmission. The 3D carbon skeleton provides paths for electron conduction. Heteroatom doping provides an additional pseudocapacitance for the NS-IPCN electrodes. As a result the NS-IPCN800 electrode has a high capacitance of 302 F g−1 at 0.05 A g−1 in a 6 mol L−1 of KOH electrolyte, and has a high energy density of 9.71 Wh kg−1 at a power density of 25.98 W kg−1. It also has excellent cycling stability with a capacitance retention of over 94.2% after 10 000 charge-discharge cycles. This work suggests an environmentally friendly way to produce NS-IPCNs from CTP for use as high-performance SC electrode materials.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return