ZHANG Wei-cai, YANG Chao-wei, HU Shu-yu, FANG Ya-wei, LIN Xiao-min, XIE Zhuo-hao, ZHENG Ming-tao, LIU Ying-liang, LIANG Ye-ru. A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability[J]. New Carbon Mater., 2023, 38(6): 1080-1091. DOI: 10.1016/S1872-5805(23)60781-4
Citation: ZHANG Wei-cai, YANG Chao-wei, HU Shu-yu, FANG Ya-wei, LIN Xiao-min, XIE Zhuo-hao, ZHENG Ming-tao, LIU Ying-liang, LIANG Ye-ru. A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability[J]. New Carbon Mater., 2023, 38(6): 1080-1091. DOI: 10.1016/S1872-5805(23)60781-4

A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability

  • Because of their high electrochemical activity, good structural stability, and abundant active sites, multi-metal sulfide/carbon (MMS/C) composites are of tremendous interest in diverse fields, including catalysis, energy, sensing, and environmental science. However, their cumbersome, inefficient, and environmentally unfriendly synthesis is hindering their practical application. We report a straightforward and universal method for their production which is based on homogeneous multi-phase interface engineering. The method has enabled the production of 14 different MMS/C composites, as examples, with well-organized composite structures, different components, and dense heterointerfaces. Because of their composition and structure, a typical composite has efficient, fast, and persistent lithium-ion storage. A ZnS-Co9S8/C composite anode showed a remarkable rate performance and an excellent capacity of 651 mAh·g−1 at 0.1 A·g−1 after 600 cycles. This work is expected to pave the way for the easy fabrication of MMS/C composites.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return