Volume 36 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
CHENG Xiao-qin, LI Hui-jun, ZHAO Zhen-xin, WANG Yong-zhen, WANG Xiao-min. The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries. New Carbon Mater., 2021, 36(1): 93-105. doi: 10.1016/S1872-5805(21)60007-0
Citation: CHENG Xiao-qin, LI Hui-jun, ZHAO Zhen-xin, WANG Yong-zhen, WANG Xiao-min. The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries. New Carbon Mater., 2021, 36(1): 93-105. doi: 10.1016/S1872-5805(21)60007-0

The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries

doi: 10.1016/S1872-5805(21)60007-0
Funds:  The authors would like to offer special thanks to Naticnal Natural Science Foundation of China (U1810115, U1710256, 52072256)
More Information
  • Raman spectroscopy is a fast, non-destructive and high-resolution characterization tool based on laser physics that can be applied to a wide range of materials science problems. It has proven to be an effective tool in studying phase transitions induced by variables such as temperature, pressure or electrochemical reactions. In-situ Raman spectroscopy can be used to track any microstructural changes of the electrode materials and interface reactions in alkali metal-ion batteries during charging and discharging. Carbon materials have become the most widely used anode materials for lithium-ion batteries because of their good electrochemical reversibility, excellent stability, low electrochemical charge/discharge potential platform, and low cost. The use of in-situ Raman spectroscopy in understanding the reactions occurring in alkali metal-ion batteries using carbon anode materials is summarized with a focus on the energy storage mechanism in Li+/Na+/K+ ion batteries using carbon materials such as graphite and hard carbon as the anode materials. The effects of size, stress, doping, and the solvation-assisted co-intercalation of Li+/Na+/K+ ions on the energy storage behavior in alkali metal-ion batteries are analyzed. Based on the strength and weakness of in-situ Raman spectroscopy, its combination with AFM, in situ XRD and other high-resolution in situ technologies is used to reveal the energy storage mechanisms.
  • loading
  • [1]
    Zhang Y, Xia X, Liu B, et al. Multiscale graphene-based materials for applications in sodium ion batteries[J]. Advanced Energy Materials,2019,9(8):1803342. doi: 10.1002/aenm.201803342
    [2]
    Zhang Y, Song N, He J, et al. Lithiation-aided conversion of end-of-life lithium-ion battery anodes to high-quality graphene and graphene oxide[J]. Nano letters,2019,19(1):512-519. doi: 10.1021/acs.nanolett.8b04410
    [3]
    Zhao J, Zhang Y Z, Chen J, et al. Codoped holey graphene aerogel by selective etching for high-performance sodium-ion storage[J]. Advanced Energy Materials,2020,10(18):2000099. doi: 10.1002/aenm.202000099
    [4]
    Li P, Hwang J, Sun Y. Highly wrinkled carbon tubes as an advanced anode for K-ion full batteries[J]. Journal of Materials Chemistry A,2019,7(36):20675-20682. doi: 10.1039/C9TA08071F
    [5]
    Wu Y, Xing F, Xu R, et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance[J]. Journal of Materials Chemistry A,2019,7(14):8581-8588. doi: 10.1039/C9TA01039D
    [6]
    Liu S, Zhao T, Tan X, et al. 3D pomegranate-like structures of porous carbon microspheres self-assembled by hollow thin-walled highly-graphitized nanoballs as sulfur immobilizers for Li-S batteries[J]. Nano Energy,2019,63:103894. doi: 10.1016/j.nanoen.2019.103894
    [7]
    Soler-Piña F, Hernández-Rentero C, Caballero A, et al. Highly graphitized carbon nanosheets with embedded Ni nanocrystals as anode for Li-ion batteries[J]. Nano Research,2019,13(1):86-94.
    [8]
    Kang M, Zhao H, Ye J, et al. Adsorption dominant sodium storage in three-dimensional coal-based graphite microcrystal/graphene composites[J]. Journal of Materials Chemistry A,2019,7(13):7565-7572. doi: 10.1039/C8TA12062E
    [9]
    Yang H, Xu R, Yao Y, et al. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes[J]. Advanced Functional Materials,2019,29(13):1809195. doi: 10.1002/adfm.201809195
    [10]
    Yang S, Park S, Park G, et al. Conversion reaction mechanism of ultrafine bimetallic Co-Fe selenides embedded in hollow mesoporous carbon nanospheres and their excellent K-ion storage performance[J]. Small,2020,16(33):2002345. doi: 10.1002/smll.202002345
    [11]
    Zhao Y, Wang F, Wang C, et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries[J]. Nano Energy,2019,56:426-433. doi: 10.1016/j.nanoen.2018.11.040
    [12]
    Alvin S, Cahyadi H, Hwang J, et al. Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon[J]. Advanced Energy Materials,2020,10(20):2000283. doi: 10.1002/aenm.202000283
    [13]
    Ding C, Huang L, Lan J, et al. Superresilient hard carbon nanofabrics for sodium-ion batteries[J]. Small,2020,16(11):1906883. doi: 10.1002/smll.201906883
    [14]
    Liu Y, Fang Y, Zhao Z, et al. A Ternary Fe1-xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries[J]. Advanced Energy Materials,2019,9(9):1803052. doi: 10.1002/aenm.201803052
    [15]
    Wang L, Yang G, Wang J, et al. In situ fabrication of branched TiO2/C nanofibers as binder-free and free-standing anodes for high-performance sodium-ion batteries[J]. Small,2019,15(30):1901584. doi: 10.1002/smll.201901584
    [16]
    Zhao W, Hu X, Ci S, et al. N-doped carbon nanofibers with interweaved nanochannels for high-performance sodium-ion storage[J]. Small,2019,15(46):1904054. doi: 10.1002/smll.201904054
    [17]
    Yang Q, Guo Y, Yan B, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes[J]. Advanced Materials,2020,32(25):2001755. doi: 10.1002/adma.202001755
    [18]
    Li L, Zuo Z, Wang F, et al. In situ coating graphdiyne for high-energy-density and stable organic cathodes[J]. Advanced Materials,2020,32(14):2000140. doi: 10.1002/adma.202000140
    [19]
    Li M, Mu B. Effect of different dimensional carbon materials on the properties and application of phase change materials: A review[J]. Applied Energy,2019,242:695-715. doi: 10.1016/j.apenergy.2019.03.085
    [20]
    Adams R, Varma A, Pol V. Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects[J]. Advanced Energy Materials,2019,9(35):1900550. doi: 10.1002/aenm.201900550
    [21]
    Wang C, Zhang B, Xia H, et al. Composition and architecture design of double-shelled Co0.85Se1-xSx@Carbon/Graphene hollow polyhedron with superior alkali (Li, Na, K)-ion storage[J]. Small,2020,16(17):1905853. doi: 10.1002/smll.201905853
    [22]
    Ferrari A, Basko D. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246. doi: 10.1038/nnano.2013.46
    [23]
    Ferrari A, Meyer J, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters,2006,97(18):187401. doi: 10.1103/PhysRevLett.97.187401
    [24]
    Stepanidenko E, Arefina I, Khavlyuk P, et al. Influence of the solvent environment on luminescent centers within carbon dots[J]. Nanoscale,2020,12(2):602-609. doi: 10.1039/C9NR08663C
    [25]
    Behan J, Mates-Torres E, Stamatin S, et al. Untangling cooperative effects of pyridinic and graphitic nitrogen sites at metal-free N-doped carbon electrocatalysts for the oxygen reduction reaction[J]. Small,2019,15(48):1902081. doi: 10.1002/smll.201902081
    [26]
    Liu J, Zhang Y, Zhang L, et al. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries[J]. Advanced Materials,2019,31(24):1901261.
    [27]
    Almadori Y, Delport G, Chambard R, et al. Fermi level shift in carbon nanotubes by dye confinement[J]. Carbon,2019,149:772-780. doi: 10.1016/j.carbon.2019.04.041
    [28]
    Hettler S, Sreedhara M, Serra M, et al. YS-TaS2 and YxLa1-xS-TaS2 (0</=x</=1) nanotubes: A family of misfit layered compounds[J]. ACS Nano,2020,14(5):5445-5458. doi: 10.1021/acsnano.9b09284
    [29]
    Sun Z, Wu X L, Xu J, et al. Construction of bimetallic selenides encapsulated in nitrogen/sulfur Co-doped hollow carbon nanospheres for high-performance sodium/potassium-ion half/full batteries[J]. Small,2020,16(19):1907670. doi: 10.1002/smll.201907670
    [30]
    Yang G, Li X, Guan Z, et al. Insights into lithium and sodium storage in porous carbon[J]. Nano letters,2020,20(5):3836-3843. doi: 10.1021/acs.nanolett.0c00943
    [31]
    Ding J, Zhang H, Zhou H, et al. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes[J]. Advanced Materials,2019,31(30):1900429.
    [32]
    Narayan J, Bhaumik A, Sachan R, et al. Direct conversion of carbon nanofibers and nanotubes into diamond nanofibers and the subsequent growth of large-sized diamonds[J]. Nanoscale,2019,11(5):2238-2248. doi: 10.1039/C8NR08823C
    [33]
    Lu Y, Liu Z, You S, et al. Electrospun carbon/iron nanofibers: The catalytic effects of iron and application in Cr (VI) removal[J]. Carbon,2020,166:227-244. doi: 10.1016/j.carbon.2020.05.031
    [34]
    Zhou J, Li J, Liu Z, et al. Exploring approaches for the synthesis of few-layered graphdiyne[J]. Advanced Materials,2019,31(42):1803758. doi: 10.1002/adma.201803758
    [35]
    Wu L, Dong Y, Zhao J, et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes[J]. Advanced Materials,2019,31(14):1807981. doi: 10.1002/adma.201807981
    [36]
    Saito R, Hofmann M, Dresselhaus G, et al. Raman spectroscopy of graphene and carbon nanotubes[J]. Advances in Physics,2011,60(3):413-550. doi: 10.1080/00018732.2011.582251
    [37]
    Inaba M, Yoshida H, Ogumi Z, et al. In situ Raman study on electrochemical Li intercalation into graphite[J]. Cheminform,1995,26(12):20-26.
    [38]
    Amalraj S F, Aurbach D. The use of in situ techniques in R&D of Li and Mg rechargeable batteries[J]. Journal of Solid State Electrochemistry,2011,15(5):877-890. doi: 10.1007/s10008-011-1324-9
    [39]
    Stancovski V, Badilescu S. In situ Raman spectroscopic-electrochemical studies of lithium-ion battery materials: a historical overview[J]. Journal of Applied Electrochemistry,2014,44(1):23-43. doi: 10.1007/s10800-013-0628-0
    [40]
    Kumar S N, Grekov D, Pre P, et al. Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications-An overview[J]. Renewable & Sustainable Energy Reviews,2020,124:109743.
    [41]
    Zhong X, Wu Y, Zeng S, et al. Carbon and carbon hybrid materials as anodes for sodium-ion batteries[J]. Chemistry-an Asian Journal,2018,13(10):1248-1265. doi: 10.1002/asia.201800132
    [42]
    Drüe M, Seyring M, Rettenmayr M. Phase formation and microstructure in lithium-carbon intercalation compounds during lithium uptake and release[J]. Journal of Power Sources,2017,353:58-66. doi: 10.1016/j.jpowsour.2017.03.152
    [43]
    Sonia F, Jangid M, Ananthoju B, et al. Understanding the Li-storage in few layers graphene with respect to bulk graphite: experimental, analytical and computational study[J]. Journal of Materials Chemistry A,2017,5(18):8662-8679. doi: 10.1039/C7TA01978E
    [44]
    Huang J, Csányi G, Zhao J, et al. First-principles study of alkali-metal intercalation in disordered carbon anode materials[J]. Journal of Materials Chemistry A,2019,7(32):19070-19080. doi: 10.1039/C9TA05453G
    [45]
    Liu Y, Li X, Fan L, et al. A review of carbon-based materials for safe lithium metal anodes[J]. Frontiers in Chemistry,2019,7:721. doi: 10.3389/fchem.2019.00721
    [46]
    Dahn J. Phase diagram of LixC6[J]. Physica Review B Condens Matter,1991,44(17):9170-9177. doi: 10.1103/PhysRevB.44.9170
    [47]
    Ni K, Wang X, Tao Z, et al. In operando probing of lithium-ion storage on single-layer graphene[J]. Advanced Materials,2019,31(23):1808091. doi: 10.1002/adma.201808091
    [48]
    Zou J, Sole C, Drewett N, et al. In situ study of Li intercalation into highly crystalline graphitic flakes of varying thicknesses[J]. Journal of Physical Chemistry Letters,2016,7(21):4291-4296. doi: 10.1021/acs.jpclett.6b01886
    [49]
    Maruyama S, Fukutsuka T, Miyazaki K, et al. Lithium-ion intercalation and deintercalation behaviors of graphitized carbon nanospheres[J]. Journal of Materials Chemistry A,2018,6(3):1128-1137. doi: 10.1039/C7TA07902H
    [50]
    Song H, Xie H, Xu C, et al. In situ measurement of strain evolution in the graphene electrode during electrochemical lithiation and delithiation[J]. Journal of Physical Chemistry C,2019,123(31):18861-18869. doi: 10.1021/acs.jpcc.9b05284
    [51]
    Reddy M A, Helen M, Gross A, et al. Insight into sodium Insertion and the Storage Mechanism in Hard Carbon[J]. Acs Energy Letters,2018,3(12):2851-2857. doi: 10.1021/acsenergylett.8b01761
    [52]
    Zhong X, Li Y, Zhang L, et al. High-performance sodium-ion batteries based on nitrogen-doped mesoporous carbon spheres with ultrathin nanosheets[J]. ACS Applied Materials & Interfaces,2019,11(3):2970-2977.
    [53]
    Li X, Hu X, Zhou L, et al. A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries[J]. Journal of Materials Chemistry A,2019,7(19):11976-11984. doi: 10.1039/C9TA01615E
    [54]
    Huang S, Li Z, Wang B, et al. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Advanced Functional Materials,2018,28(10):1706294. doi: 10.1002/adfm.201706294
    [55]
    Zhu Z, Cheng F, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. Journal of Power Sources,2015,293:626-634. doi: 10.1016/j.jpowsour.2015.05.116
    [56]
    Cohn A P, Share K, Carter R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene[J]. Nano letters,2016,16(1):543-548. doi: 10.1021/acs.nanolett.5b04187
    [57]
    Yi Y, Li J, Zhao W, et al. Temperature-mediated engineering of graphdiyne framework enabling high-performance potassium storage[J]. Advanced Functional Materials,2020,30(31):2003039. doi: 10.1002/adfm.202003039
    [58]
    Zhou X, Chen L, Zhang W, et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries[J]. Nano letters,2019,19(8):4965-4973. doi: 10.1021/acs.nanolett.9b01127
    [59]
    Zeng S, Zhou X, Wang B, et al. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries[J]. Journal of Materials Chemistry A,2019,7(26):15774-15781. doi: 10.1039/C9TA03245B
    [60]
    Shen C, Yuan K, Tian T, et al. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(5):5015-5021.
    [61]
    Jiang S, Li Y, Qian Y, et al. Constructing a buffering and conducting carbon nanotubes-interweaved layer on graphite flakes for high-rate and long-term K-storage properties[J]. Journal of Power Sources,2019,436:226847. doi: 10.1016/j.jpowsour.2019.226847
    [62]
    Share K, Cohn A, Carter R, et al. Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy[J]. Nanoscale,2016,8(36):16435-16439. doi: 10.1039/C6NR04084E
    [63]
    Qian Y, Jiang S, Li Y, et al. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries[J]. Advanced Energy Materials,2019,9(34):1901676. doi: 10.1002/aenm.201901676
    [64]
    Share K, Cohn A, Carter R, et al. Role of nitrogen-doped graphene for improved high-capacity potassium ion battery anodes[J]. ACS Nano,2016,10(10):9738-9744. doi: 10.1021/acsnano.6b05998
    [65]
    Chang X, Zhou X, Ou X, et al. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage[J]. Advanced Energy Materials,2019,9(47):1902672. doi: 10.1002/aenm.201902672
    [66]
    Gan Q, Xie J, Zhu Y, et al. Sub-20 nm carbon nanoparticles with expanded interlayer spacing for high-performance potassium storage[J]. ACS Applied Materials & Interfaces,2019,11(1):930-939.
    [67]
    Lu C, Sun Z, Yu L, et al. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium-ion batteries[J]. Advanced Energy Materials,2020,10(28):2001161. doi: 10.1002/aenm.202001161
    [68]
    Cohn A, Muralidharan N, Carter R, et al. Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons[J]. Journal of Materials Chemistry A,2016,4(39):14954-14959. doi: 10.1039/C6TA06797B
    [69]
    Hui J, Schorr N, Pakhira S, et al. Achieving fast and efficient K+ intercalation on ultrathin graphene electrodes modified by a Li+ based solid-electrolyte interphase[J]. Journal of the American Chemical Society,2018,140(42):13599-13603. doi: 10.1021/jacs.8b08907
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article Views(3860) PDF Downloads(229) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return