Volume 36 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
LIU Hui, LIU Zi-hui, ZHANG Jin-qiang, ZHI Lin-jie, WU Ming-bo. Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction. New Carbon Mater., 2021, 36(3): 585-593. doi: 10.1016/S1872-5805(21)60043-4
Citation: LIU Hui, LIU Zi-hui, ZHANG Jin-qiang, ZHI Lin-jie, WU Ming-bo. Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction. New Carbon Mater., 2021, 36(3): 585-593. doi: 10.1016/S1872-5805(21)60043-4

Boron and nitrogen co-doped carbon dots for boosting electrocatalytic oxygen reduction

doi: 10.1016/S1872-5805(21)60043-4
More Information
  • Author Bio:

    刘 卉,博士研究生. E-mail:liuhui9104@163.com

  • Corresponding author: WU Ming-bo, Professor. E-mail: wumb@upc.edu.cn
  • Received Date: 2021-05-06
  • Rev Recd Date: 2021-05-14
  • Available Online: 2021-05-31
  • Publish Date: 2021-06-01
  • Carbon dots (CDs) have become an emerging carbon nanomaterial for use in energy-conversion systems because of their large surface area and rapid electron transfer. Carbon dots (BN-CDs) doped with both boron and nitrogen were synthesized by a simple one-step electrochemical etching approach using low-cost petroleum coke as precursor. Compared with CDs doped with only B or N, BN-CDs showed an excellent four-electron oxygen reduction reaction (ORR) activity with a positive onset potential of 0.958 V and a large diffusion-limited current density of −4.32 mA cm−2. Furthermore, the long-term stability and methanol tolerance of BN-CDs were better than those of a commercial Pt/C catalyst. It was found by density functional theory (DFT) calculation that the co-doping of N and B promoted the adsorption of O2 molecules in the ORR process. This work provides new insight into the rational design of carbon nanomaterials and their use in energy conversion.
  • loading
  • [1]
    Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future[J]. Advanced Materials,2019,31(13):1804799. doi: 10.1002/adma.201804799
    [2]
    Sealy C. The problem with platinum[J]. Materials Today,2008,11(12):65-68. doi: 10.1016/S1369-7021(08)70254-2
    [3]
    Yan R, Wang K, Wang C W, et al. A review of graphene-based catalysts for oxygen reduction reaction[J]. New Carbon Materials,2020,35(5):508-521.
    [4]
    Jorge A B, Jervis R, Periasamy A P, et al. 3D carbon materials for efficient oxygen and hydrogen electrocatalysis[J]. Advanced Energy Materials,2020,10(11):1902494. doi: 10.1002/aenm.201902494
    [5]
    Dai L, Xue Y, Qu L, et al. Metal-free catalysts for oxygen reduction reaction[J]. Chemical Reviews,2015,115(11):4823-4892. doi: 10.1021/cr5003563
    [6]
    Su D S, Zhang J, Frank B, et al. Metal-free heterogeneous catalysis for sustainable chemistry[J]. ChemSusChem,2010,3(2):169-180. doi: 10.1002/cssc.200900180
    [7]
    Ye X, Hu L, Liu M, et al. Improved oxygen reduction performance of a N, S co-doped graphene-like carbon prepared by a simple carbon bath method[J]. New Carbon Materials,2020,35(5):531-539. doi: 10.1016/S1872-5805(20)60506-6
    [8]
    Zhao Y, Yang L, Chen S, et al. Can boron and nitrogen co-doping improve oxygen reduction reaction activity on carbon nanotubes?[J]. Journal of the American Chemical Society,2013,135(4):1201-1204. doi: 10.1021/ja310566z
    [9]
    Cai T, Liu B, Pang E, et al. A review on the preparation and applications of coal-based fluorescent carbon dots[J]. New Carbon Materials,2020,35(6):646-666. doi: 10.1016/S1872-5805(20)60520-0
    [10]
    Tian L, Li Z, Wang P, et al. Carbon quantum dots for advanced electrocatalysis[J]. Journal of Energy Chemistry,2020,55(1):279-294.
    [11]
    Hu C, Li M, Qiu J, et al. Design and fabrication of carbon dots for energy conversion and storage[J]. Chemical Society Reviews,2019,48(8):2315-2337. doi: 10.1039/C8CS00750K
    [12]
    Zhang Y, Li K, Ren S, et al. Coal-derived graphene quantum dots produced by ultrasonic physical tailoring and their capacity for Cu (II) detection[J]. ACS Sustainable Chemistry & Engineering,2019,7(11):9793-9799.
    [13]
    Hu C, Yu C, Li M, et al. Nitrogen-doped carbon dots decorated on graphene: a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction[J]. Chemical Communications,2015,51(16):3419-3422. doi: 10.1039/C4CC08735F
    [14]
    Yan Y, Gong J, Chen J, et al. Recent advances on graphene quantum dots: from chemistry and physics to applications[J]. Advanced Materials,2019,31(21):1808283. doi: 10.1002/adma.201808283
    [15]
    Dinh K N, Gomes V G. Iodine doped composite with biomass carbon dots and reduced graphene oxide: A versatile bifunctional electrode for energy storage and oxygen reduction reaction[J]. Journal of Materials Chemistry A,2019,7(39):22650-22662. doi: 10.1039/C9TA05559B
    [16]
    Rao Y, Ning H, Ma X, et al. Template-free synthesis of coral-like nitrogen-doped carbon dots/Ni3S2/Ni foam composites as highly efficient electrodes for water splitting[J]. Carbon,2018,129:335-341. doi: 10.1016/j.carbon.2017.12.040
    [17]
    Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization on density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics,2010,132(15):154104. doi: 10.1063/1.3382344
    [18]
    Baker S N, Baker G A. Luminescent carbon nanodots: emergent nanolights[J]. Angewandte Chemie International Edition,2010,49(38):6726-6744. doi: 10.1002/anie.200906623
    [19]
    Li H, Kang Z, Liu Y, et al. Carbon nanodots: synthesis, properties and applications[J]. Journal of Materials Chemistry,2012,22(46):24230-24253. doi: 10.1039/c2jm34690g
    [20]
    Ozaki J, Kimura N, Anahara T, et al. Preparation and oxygen reduction activity of BN-doped carbons[J]. Carbon,2007,45(9):1847-1853. doi: 10.1016/j.carbon.2007.04.031
    [21]
    Li Q, Zhang S, Dai L, et al. Nitrogen-doped colloidal graphene quantum dots and their size-dependent electrocatalytic activity for the oxygen reduction reaction[J]. Journal of the American Chemical Society,2012,134(46):18932-18935. doi: 10.1021/ja309270h
    [22]
    Hu C, Yu C, Li M, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu (II) detection[J]. Small,2014,10(23):4926-4933. doi: 10.1002/smll.201401328
    [23]
    Liu R, Huang H, Li H, et al. Metal nanoparticle/carbon quantum dot composite as a photocatalyst for high-efficiency cyclohexane oxidation[J]. ACS Catalysis,2013,4(1):328-336.
    [24]
    Liu H, Zhao Q, Liu J, et al. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction[J]. Applied Surface Science,2017,423:909-916. doi: 10.1016/j.apsusc.2017.06.225
    [25]
    Han Y, Tang D, Yang Y, et al. Non-metal single/dual doped carbon quantum dots: A general flame synthetic method and electro-catalytic properties[J]. Nanoscale,2015,7(14):5955-5962. doi: 10.1039/C4NR07116F
    [26]
    Zhang Y, Zhang K, Jia K, et al. Preparation of coal-based graphene quantum dots/α-Fe2O3 nanocomposites and their lithium-ion storage properties[J]. Fuel,2019,241:646-652. doi: 10.1016/j.fuel.2018.12.030
    [27]
    Kim Y A, Fujisawa K, Muramatsu H, et al. Raman spectroscopy of boron-doped single-layer graphene[J]. ACS Nano,2012,6(7):6293-6300. doi: 10.1021/nn301728j
    [28]
    Lu J, Yang J, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano,2009,3(8):2367-2375. doi: 10.1021/nn900546b
    [29]
    Bao L, Zhang Z L, Tian Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism[J]. Advanced Materials,2011,23(48):5801-5806. doi: 10.1002/adma.201102866
    [30]
    He M, Guo X, Huang J, et al. Mass production of tunable multicolor graphene quantum dots from an energy resource of coke by a one-step electrochemical exfoliation[J]. Carbon,2018,140:508-520. doi: 10.1016/j.carbon.2018.08.067
    [31]
    Van Tam T, Kang S G, Babu K F, et al. Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Journal of Materials Chemistry A,2017,5(21):10537-10543. doi: 10.1039/C7TA01485F
    [32]
    Zheng Y, Jiao Y, Ge L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie International Edition,2013,125(11):3192-3198.
    [33]
    Li Z, Wei L, Jiang W J, et al. Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction[J]. Applied Catalysis B: Environmental,2019,251:240-246. doi: 10.1016/j.apcatb.2019.03.046
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article Views(1032) PDF Downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return