Volume 36 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
SHAN Yu-hang, LI Li-bo, DU Jin-tian, ZHAI Mo. High performance lithium-sulfur batteries using three-dimensional hierarchical porous carbons to host the sulfur. New Carbon Mater., 2021, 36(6): 1094-1102. doi: 10.1016/S1872-5805(21)60063-X
Citation: SHAN Yu-hang, LI Li-bo, DU Jin-tian, ZHAI Mo. High performance lithium-sulfur batteries using three-dimensional hierarchical porous carbons to host the sulfur. New Carbon Mater., 2021, 36(6): 1094-1102. doi: 10.1016/S1872-5805(21)60063-X

High performance lithium-sulfur batteries using three-dimensional hierarchical porous carbons to host the sulfur

doi: 10.1016/S1872-5805(21)60063-X
More Information
  • Author Bio:

    单宇航,在读博士. E-mail:m18846034009@163.com

  • Corresponding author: LI Li-bo, Ph.D, Professor. E-mail: lilibo@hrbust.edu.cn
  • Received Date: 2020-04-24
  • Rev Recd Date: 2020-06-19
  • Available Online: 2021-06-03
  • Publish Date: 2021-12-01
  • Lithium-sulfur batteries are promising for future energy storage because of their high-energy density and low price. However, they have many problems, especially the large volume change during cycling and the shuttle effect of the soluble polysulfides. To solve these problems, a three-dimensional porous carbon (3D-HPC) was investigated as the sulfur host of a lithium-sulfur battery. The 3D-HPC was prepared by a template method using polymethyl methacrylate and zinc oxide as the templates to form mesopores and macropores, respectively. The results showed that the interconnected macroporous channels and abundant large mesopores formed a three-dimensional conductive carbon network which is beneficial for electron/ion transfer and relieves the cathode volume change by the physical limiting effect. The pores alleviate the shuttle effect by the capillary condensation. A 3D-HPC-S composite used as the cathode has excellent electrochemical properties. The first discharge specific capacity of the 3D-HPC-S is 1 314.6 mAh g−1 at 0.2 C with a sulfur loading of 70%. After 100 cycles, the capacity retention rate is 69.13%. At 0.5 C, the capacity retention rate after 200 cycles is 59.02% and the average coulombic efficiency is 98.16%.
  • loading
  • [1]
    Xie J, Peng H, Huang J, et al. A Supramolecular capsule for reversible polysulfide storage/delivery in lithium–sulfur batteries[J]. Angewandte Chemie International Edition,2017,56(51):16223-16227. doi: 10.1002/anie.201710025
    [2]
    Jia Y, Zhao Y, Yang X, Ren M, et al. Sulfur encapsulated in nitrogen-doped graphene aerogel as a cathode material for high performance lithium-sulfur batteries[J]. International Journal of Hydrogen Energy,2021,46(10):7642-7652. doi: 10.1016/j.ijhydene.2020.11.199
    [3]
    Li M, Wahyudi W, Kumar P, et al. A scalable approach to construct free-standing and flexible carbon networks for lithium-sulfur battery[J]. ACS Applied Materials & Interfaces,2017,9(9):8047-8054. doi: 10.1021/acsami.6b12546
    [4]
    Shan Y, Li L. An interlayer composed of porous carbon sheet embedded with TiO2 nanoparticles for stable and high rate lithium-sulfur batteries[J]. Chemical Communication,2021,57(75):9550-9553. doi: 10.1039/d1cc01520f
    [5]
    Jiang Y, Deng Y, Zhang B, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries[J]. Nanoscale,2020,12(23):12308-12316. doi: 10.1039/d0nr02607g
    [6]
    Yuan H, Peng H, Huang J, et al. Sulfur redox reactions at working interfaces in lithium–sulfur batteries: A perspective[J]. Advanced Materials Interfaces,2019,6(4):1802046. doi: 10.1002/admi.201802046
    [7]
    Li L B, Shan Y H, Wang F R, et al. Improving fast and safe transfer of lithium ions in solid-state lithium batteries by porosity and channel structure of polymer electrolyte[J]. ACS Applied Materials & Interfaces,2021,13(41):48525-48535. doi: 10.1016/j.cej.2019.05.119
    [8]
    Chu H, Noh H, Kim Y J, et al. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions[J]. Nature Communications,2019,10(1):188. doi: 10.1038/s41467-018-07975-4
    [9]
    Lin S, Shafique M K, Cai Z, et al. Three-dimensional-ordered porous nanostructures for lithium-sulfur battery anodes and cathodes confer superior energy storage performance[J]. ACS Nano,2019,13(11):13037-13046. doi: 10.1021/acsnano.9b05718
    [10]
    Yan M, Chen H, Yu Y, et al. 3D Ferroconcrete-like aminated carbon nanotubes network anchoring sulfur for advanced lithium-sulfur battery[J]. Advanced Energy Materials,2018,8(25):1801066. doi: 10.1002/aenm.201801066
    [11]
    Chen X C, Li L B, Shan Y H, et al. Synergistic effect of cerium oxide with core-shell structure embedded in porous carbon for high-performance lithium-sulfur batteries[J]. Materials Today Communications,2021,27:102381. doi: 10.1016/j.mtcomm.2021.102381
    [12]
    Lin H, Yang D D, Lou N, et al. Functionalized titanium nitride-based MXenes as promising host materials for lithium-sulfur batteries: A first principles study[J]. Ceramics International,2019,45(2):1588-1594. doi: 10.1016/j.ceramint.2018.10.033
    [13]
    Pang Y, Wei J, Wang Y, et al. Synergetic protective effect of the ultralight MWCNTs/NCQDs modified separator for highly stable lithium-sulfur batteries[J]. Advanced Energy Materials,2018,8(10):1802288.
    [14]
    Li G, Wang S, Zhang Y, et al. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Advanced Materials,2018,30(22):1705590. doi: 10.1002/adma.201705590
    [15]
    Yang Y, Yu Y, Ma G, et al. High-performance lithium?sulfur batteries fabricated from a three-dimensional porous reduced graphene oxide/La2O3microboards/sulfur aerogel[J]. Ceramics International,2019,45(7):9017-9024. doi: 10.1016/j.ceramint.2019.01.235
    [16]
    Wang F, Zuo Z, Li L, et al. Graphdiyne nanostructure for high-performance lithium-sulfur batteries[J]. Nano Energy,2020,68:104307. doi: 10.1016/j.nanoen.2019.104307
    [17]
    Patil S B, Kim H J, Lim H K, et al. Exfoliated 2D lepidocrocite titanium oxide nanosheets for high sulfur content cathodes with highly stable Li–S battery performance[J]. ACS Energy Letters,2018,3(2):409-412.
    [18]
    Sun W, Liu C, Li Y, et al. Rational construction of Fe2N@C yolk-shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries[J]. ACS Nano,2019,13(10):12137-12147. doi: 10.1021/acsnano.9b06629
    [19]
    Ren Y X, Zeng L, Jiang H R, et al. Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries[J]. Nature Communications,2019,10(1):3249. doi: 10.1038/s41467-019-11168-y
    [20]
    Shan Y H, Li L B, Yang X Y. Solid-state polymer electrolyte solves the transfer of lithium ions between the solid-solid interface of the electrode and the electrolyte in lithium-sulfur and lithium-ion batteries[J]. ACS Applied Energy Materials,2021, 4(5): 5101-5112 doi: 10.1021/acsaem.1c00658
    [21]
    Zhou B, Hu X, Zeng G, et al. Bottom-up construction of porous organic frameworks with built-In TEMPO as a cathode for lithium-sulfur batteries[J]. ChemSusChem,2017,10(14):2955-2961. doi: 10.1002/cssc.201700749
    [22]
    Long B, Qiao Z, Zhang J, et al. Polypyrrole-encapsulated amorphous Bi2S3 hollow sphere for long life sodium ion batteries and lithium–sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(18):11370-11378. doi: 10.1039/C9TA01358J
    [23]
    Wu X, Yuan X, Yu J, et al. A high-capacity dual core-shell structured MWCNTs@S@PPy nanocomposite anode for advanced aqueous rechargeable lithium batteries[J]. Nanoscale,2017,9(31):11004-11011. doi: 10.1039/C7NR03602G
    [24]
    Fei L, Li X, Bi W, et al. Graphene/sulfur hybrid nanosheets from a space-confined "sauna" reaction for high-performance lithium-sulfur batteries[J]. Advanced Materials,2015,27(39):5936-5942. doi: 10.1002/adma.201502668
    [25]
    Chen G, Li J, Liu N, et al. Synthesis of nitrogen-doped oxygen-deficient TiO2−x/reduced graphene oxide/sulfur microspheres via spray drying process for lithium-sulfur batteries[J]. Electrochimica Acta,2019,326:134968. doi: 10.1016/j.electacta.2019.134968
    [26]
    Lu X, Zhang Q, Wang J, et al. High performance bimetal sulfides for lithium-sulfur batteries[J]. Chemical Engineering Journal,2019,358:955-961. doi: 10.1016/j.cej.2018.10.104
    [27]
    Li L B, Shan Y H, Yang X Y. New insights for constructing solid polymer electrolytes with ideal lithium-ion transfer channels by using inorganic filler[J]. Materials Today Communications,2021,26:101910. doi: 10.1016/j.mtcomm.2020.101910
    [28]
    Wei B, Shang C, Pan X, et al. Lotus root-like nitrogen-doped carbon nanofiber structure assembled with VN catalysts as a multifunctional host for superior lithium-sulfur batteries[J]. Nanomaterials-Basel,2019,9(12):1724. doi: 10.3390/nano9121724
    [29]
    Deng N, Liu Y, Wang L, et al. Designing of a phosphorus, nitrogen, and sulfur three-flame retardant applied in a gel poly-m-phenyleneisophthalamide nanofiber membrane for advanced safety lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2019,11(40):36705-36716.
    [30]
    Bian Z, Yuan T, Xu Y, et al. Boosting Li-S battery by rational design of freestanding cathode with enriched anchoring and catalytic N-sites carbonaceous host[J]. Carbon,2019,150:216-223. doi: 10.1016/j.carbon.2019.05.022
    [31]
    Li P, Deng J, Li J, et al. Hollow graphene spheres coated separator as an efficient trap for soluble polysulfides in Li-S battery[J]. Ceramics International,2019,45(10):13219-13224. doi: 10.1016/j.ceramint.2019.04.006
    [32]
    Park G D, Kang Y C. Aerosol-assisted synthesis of porous and hollow carbon-carbon nanotube composite microspheres as sulfur host materials for high-performance Li-S batteries[J]. Applied Surface Science,2019,495:143637. doi: 10.1016/j.apsusc.2019.143637
    [33]
    Wang P, Li N, Zhang Z, et al. Synergetic enhancement of polysulfide chemisorption and electrocatalysis over bicontinuousMoN@N-rich carbon porous nano-octahedra for Li–S batteries[J]. Journal of Materials Chemistry A,2019,7(38):21934-21943. doi: 10.1039/C9TA05517G
    [34]
    Wang J, Liu Y, Cheng M, et al. Hierarchical porous carbon-graphene-based lithium–sulfur batteries[J]. Electrochimica Acta,2019,318:161-168. doi: 10.1016/j.electacta.2019.05.090
    [35]
    Wang Y, Lu Y, Luo R, et al. Densely-stacked N-doped mesoporous TiO2 /carbon microsphere derived from outdated milk as high-performance electrode material for energy storages[J]. Ceramics International,2018,44(14):16265-16272. doi: 10.1016/j.ceramint.2018.06.020
    [36]
    Yao Y, Xiao Z, Liu P, et al. Facile synthesis of 2D ultrathin and ultrahigh specific surface hierarchical porous carbon nanosheets for advanced energy storage[J]. Carbon,2019,155:674-685. doi: 10.1016/j.carbon.2019.09.010
    [37]
    Niu S Z, Wu S D, Lu W, et al. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries[J]. New Carbon Materials,2017,32(4):289-296. doi: 10.1016/S1872-5805(17)60123-9
    [38]
    He Y, Qiao Y, Chang Z, et al. Developing a "polysulfide-phobic" strategy to restrain shuttle effect in lithium-sulfur batteries[J]. Angewandte Chemie International,2019,58(34):11774-11780. doi: 10.1002/anie.201906055
    [39]
    Gueon D, Hwang J T, Yang S B, et al. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J]. ACS Nano,2018,12(1):226-233. doi: 10.1021/acsnano.7b05869
    [40]
    Wang Q, Liu H, Li R, et al. Clustered-microcapsule-shaped microporous carbon-coated sulfur composite synthesized via in situ oxidation[J]. ACS Applied Materials Interfaces,2017,9(51):44512-44518. doi: 10.1021/acsami.7b14467
    [41]
    Zhu F L, Yang, Z, Zhao, J P, et al. Microwave assisted preparation of expanded graphite/sulfur composites as cathodes for Li-S batteries[J]. New Carbon Materials,2016,31(2):199-204. doi: 10.1016/S1872-5805(16)60011-2
    [42]
    Shi R, Han C, Li H, et al. NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors[J]. Journal of Materials Chemistry A,2018,6(35):17057-17066. doi: 10.1039/C8TA05853A
    [43]
    Jang J, Lim B, Choi M, et al. A simple synthesis of mesoporous carbons with tunable mesopores using a colloidal template-mediated vapor deposition polymerization[J]. Chemical. Communications,2005(33):4214-4216. doi: 10.1039/b506265a
    [44]
    Deng X, Li J, Ma L, et al. Three-dimensional porous carbon materials and their composites as electrodes for electrochemical energy storage systems[J]. Materials Chemistry Frontiers,2019,3(11):2221-2245. doi: 10.1039/C9QM00425D
    [45]
    Cheng D, Zhao Y, An T, et al. 3D interconnected crumpled porous carbon sheets modified with high-level nitrogen doping for high performance lithium sulfur batteries[J]. Carbon,2019,154:58-66. doi: 10.1016/j.carbon.2019.07.094
    [46]
    Gu X, Li H, Wen H, et al. From agaric hydrogel to nitrogen-doped 3D porous carbon for high-performance Li-S batteries[J]. Journal of Materials Science,2019,55(3):1136-1147.
    [47]
    Wang L, Zhi W, Wan J, et al. 3D porous spherical sulfur/carbon cathode materials with in situ vapor-phase polymerized polypyrrole coating layer for high-performance lithium–sulfur batteries[J]. ACS Sustainable Chemistry Engineering,2019,7(3):3339-3348. doi: 10.1021/acssuschemeng.8b05489
    [48]
    Xu H, Liu Y, Bai Q, et al. Discarded cigarette filter-derived hierarchically porous carbon@graphene composites for lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(8):3558-3562. doi: 10.1039/C8TA11615F
    [49]
    Li Y, Cai, Q, Wang, L, et al. Mesoporous TiO2 nanocrystals/graphene as an efficient sulfur host material for high-performance lithium-sulfur batteries[J]. ACS Applied Materials International,2016,8(36):23784-23792. doi: 10.1021/acsami.6b09479
    [50]
    Miao X, Sun D, Zhou X, et al. Designed formation of nitrogen and sulfur dual-doped hierarchically porous carbon for long-life lithium and sodium ion batteries[J]. Chemical Engineering Journal,2019,15(364):208-216.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article Views(745) PDF Downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return