Volume 36 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
WANG Tian-yi, HUANG Heng-bo, LI Hao-liang, SUN You-kun, XUE Yu-hua, XIAO Shu-ning, YANG Jun-he. Carbon materials for solar-powered seawater desalination. New Carbon Mater., 2021, 36(4): 683-701. doi: 10.1016/S1872-5805(21)60066-5
Citation: WANG Tian-yi, HUANG Heng-bo, LI Hao-liang, SUN You-kun, XUE Yu-hua, XIAO Shu-ning, YANG Jun-he. Carbon materials for solar-powered seawater desalination. New Carbon Mater., 2021, 36(4): 683-701. doi: 10.1016/S1872-5805(21)60066-5

Carbon materials for solar-powered seawater desalination

doi: 10.1016/S1872-5805(21)60066-5
Funds:  This work was supported by the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-E00015), Shanghai Scientific and Technological Innovation Project (19JC1410402), Science and Technology Commission of Shanghai Municipality (20060502200), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and Shanghai Sailing Program (20YF1432200, 20YF1432100)
More Information
  • Author Bio:

    王天逸,硕士研究生. E-mail: 416046979@qq.com

  • Corresponding author: XIAO Shu-ning, Professor. E-mail: xiaosn@usst.edu.cn; YANG Jun-he, Professor. E-mail: jhyang@usst.edu.cn
  • Received Date: 2021-03-30
  • Rev Recd Date: 2021-05-08
  • Available Online: 2021-06-08
  • Publish Date: 2021-08-01
  • Carbon materials are widely used in solar-powered seawater desalination (SSD) and have attracted a lot of attention in recent years. Recent developments of carbon-based solar absorbers in SSD are reviewed, including composites of carbon materials with other materials such as metal nanoparticles, semiconductors and biomass materials, their photothermal conversion mechanisms, light utilization efficiencies and salt resistance, and the processes of thermal transport and water transfer. The important roles of carbon in SSD are highlighted, including increasing light absorption, improving photothermal conversion efficiency, and balancing water transfer and salt resistance. The key challenges of carbon-based materials in SSD applications are discussed.
  • loading
  • [1]
    Eliasson J. The rising pressure of global water shortages[J]. Nature,2015,517:6-7. doi: 10.1038/517006a
    [2]
    Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades[J]. Nature,2008,452:301-310. doi: 10.1038/nature06599
    [3]
    Chen W, Chen S Y, Liang T F, et al. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes[J]. Nature Nanotechnology,2018,13(4):345-350. doi: 10.1038/s41565-018-0067-5
    [4]
    Divincenzo M, Tiraferri A, Musteata V E, et al. Biomimetic artificial water channel membranes for enhanced desalination[J]. Nature Nanotechnology,2021,16(2):190-196. doi: 10.1038/s41565-020-00796-x
    [5]
    Yang P, Liu K, Chen Q, et al. Solar-driven simultaneous steam production and electricity generation from salinity[J]. Energy & Environmental Science,2017,10(9):1923-1927.
    [6]
    Mauter M S and Fiske P S. Desalination for a circular water economy[J]. Energy & Environmental Science,2020,13(10):3180-3184.
    [7]
    Lin S S, Zhao H Y, Zhu L P, et al. Seawater desalination technology and engineering in China: a review[J]. Desalination,2021,498:114728. doi: 10.1016/j.desal.2020.114728
    [8]
    Doornbusch G, Wal M V D, Tedesco M, et al. Multistage electrodialysis for desalination of natural seawater[J]. Desalination,2021,505:114973. doi: 10.1016/j.desal.2021.114973
    [9]
    Amy G, Ghaffour N, Li Z Y, et al. Membrane-based seawater desalination: present and future prospects[J]. Desalination,2017,401:16-21. doi: 10.1016/j.desal.2016.10.002
    [10]
    Politano A, Argurio P, Profio G D, et al. Photothermal membrane distillation for seawater desalination[J]. Advanced Materials,2017,29(2)-1603504.
    [11]
    Ni G, Miljkovic N, Ghasemi H, et al. Volumetric solar heating of nanofluids for direct vapor generation[J]. Nano Energy,2015,17:290-301. doi: 10.1016/j.nanoen.2015.08.021
    [12]
    Shang M Y, Li N, Zhang S D, et al. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater[J]. ACS Applied Energy Materials,2017,1:56-61.
    [13]
    Dao V D, Vu N H , Yun S. Recent advances and challenges for solar-driven water evaporation system toward applications[J]. Nano Energy,2020,68:104324. doi: 10.1016/j.nanoen.2019.104324
    [14]
    Badenhorst H. A review of the application of carbon materials in solar thermal energy storage[J]. Solar Energy,2019,192:35-68. doi: 10.1016/j.solener.2018.01.062
    [15]
    Cao S S, Jiang Q S, Wu X H, et al. Advances in solar evaporator materials for freshwater generation[J]. Journal of Materials Chemistry A,2019,7(42):24092-24123. doi: 10.1039/C9TA06034K
    [16]
    Gao M M, Zhu L L, Peh C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science,2019,12(3):841-864.
    [17]
    Pang Y S, Zhang J J, Ma R M, et al. Solar–thermal water evaporation: A review[J]. ACS Energy Letters,2020,5(2):437-456. doi: 10.1021/acsenergylett.9b02611
    [18]
    Dao V D and Choi H S. Carbon-based sunlight absorbers in solar-driven steam generation devices[J]. Global Challenges,2018,2(2):1700094. doi: 10.1002/gch2.201700094
    [19]
    Chen G Y, Sun J M, Peng Q, et al. Biradical-featured stable organic-small-molecule photothermal materials for highly efficient solar-driven water evaporation[J]. Advanced Materials,2020,32(29):e1908537. doi: 10.1002/adma.201908537
    [20]
    Liu C X, Huang J F, Hsiung C E, et al. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles[J]. Advanced Sustainable Systems,2017,1:1600013. doi: 10.1002/adsu.201600013
    [21]
    Awad F S, Kiriarachchi H D, Abouzeid K M, et al. Photothermal membrane distillation for seawater desalination[J]. ACS Applied Energy Materials,2018,1(3):976-985. doi: 10.1021/acsaem.8b00109
    [22]
    Ontiveros M A, Quintero Y, Llanquilef A, et al. Anti-biofouling and desalination properties of thin film composite reverse osmosis membranes modified with copper and iron nanoparticles[J]. Materials (Basel),2019,12(13):2081. doi: 10.3390/ma12132081
    [23]
    Elsayed E, Dadah R A, Mahmoud S, et al. Experimental testing of aluminium fumarate MOF for adsorption desalination[J]. Desalination,2020,475:114170. doi: 10.1016/j.desal.2019.114170
    [24]
    Wang M M, Wang P, Zhang J, et al. A ternary Pt/Au/TiO2 -decorated plasmonic wood carbon for high-efficiency interfacial solar steam generation and photodegradation of tetracycline[J]. Chemistry-Sustainability-Energy-Materials,2019,12(2):467-472.
    [25]
    Yang X D, Yang Y B, Fu L N, et al . An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials,2018,28(3):1704505. doi: 10.1002/adfm.201704505
    [26]
    Zhu G L, Xu J J, Zhao W L, et al. Constructing black titania with unique nanocage structure for solar desalination[J]. ACS Applied Materials & Interfaces,2016,8(46):31716-31721. doi: 10.1021/acsami.6b11466
    [27]
    Huang W, Su P W, Cao Y, et al. Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multifunctional solar distillation[J]. Nano Energy,2020,69:104465. doi: 10.1016/j.nanoen.2020.104465
    [28]
    Chen R, Wu Z J, Zhang T Q, et al. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating[J]. RSC Advances,2017,7(32):19849-19855. doi: 10.1039/C7RA03007J
    [29]
    Chen C J, Kuang Y D, Hu L B. Challenges and opportunities for solar evaporation[J]. Joule,2019,3(3):683-718. doi: 10.1016/j.joule.2018.12.023
    [30]
    Liu X H, Mishra D D, Wang X B, et al. Towards highly efficient solar-driven interfacial evaporation for desalination[J]. Journal of Materials Chemistry A,2020,8(35):17907-17937. doi: 10.1039/C9TA12612K
    [31]
    Xu Z R, Li Z D, Jiang Y H, et al. Recent advances in solar-driven evaporation systems[J]. Journal of Materials Chemistry A,2020,8(48):25571-25600. doi: 10.1039/D0TA08869B
    [32]
    Zhang Y X, Xiong T, Nandakumar D K, et al. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation[J]. Advanced Science,2020,7(9):1903478. doi: 10.1002/advs.201903478
    [33]
    Chen C J, Li Y J, Song J W, et al. Recent advances in solar-driven evaporation systems[J]. Advanced Materials,2017,29(30):1701756. doi: 10.1002/adma.201701756
    [34]
    Zhao F, Guo Y H, Zhou X Y, et al. Materials for solar-powered water evaporation[J]. Nature Reviews Materials,2020,5(5):388-401. doi: 10.1038/s41578-020-0182-4
    [35]
    Tao P, Ni G, Song C Y, et al. Solar-driven interfacial evaporation[J]. Nature Energy,2018,3(12):1031-1041. doi: 10.1038/s41560-018-0260-7
    [36]
    Mao H N and Wang X G. Use of in-situ polymerization in the preparation of graphene / polymer nanocomposites[J]. New Carbon Materials,2020,35(4):336-343. doi: 10.1016/S1872-5805(20)60493-0
    [37]
    Liu M J, Wei F, Yang X M, et al. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template[J]. New Carbon Materials,2018,33(4):316-323. doi: 10.1016/S1872-5805(18)60342-7
    [38]
    Guo M X, Wu J B, Li F H, et al. A low-cost lotus leaf-based carbon film for solar-driven steam generation[J]. New Carbon Materials,2020,35(4):436-443. doi: 10.1016/S1872-5805(20)60501-7
    [39]
    Wang X Z, He Y R, Liu X. Synchronous steam generation and photodegradation for clean water generation based on localized solar energy harvesting[J]. Energy Conversion and Management,2018,173:158-166. doi: 10.1016/j.enconman.2018.07.065
    [40]
    Gao X, Ren H Y, Zhou J Y, et al. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation[J]. Chemistry of Materials,2017,29(14):5777-5781. doi: 10.1021/acs.chemmater.7b01838
    [41]
    Inagaki M. Pores in carbon materials-importance of their control[J]. New Carbon Materials,2009,24(3):193-232. doi: 10.1016/S1872-5805(08)60048-7
    [42]
    Jiang F, Liu H, Li Y J, et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation[J]. ACS Applied Materials & Interfaces,2018,10(1):1104-1112.
    [43]
    Li K, Gao M M, Li Z P, et al. Multi-interface engineering of solar evaporation devices via scalable, synchronous thermal shrinkage and foaming[J]. Nano Energy,2020,74:104875. doi: 10.1016/j.nanoen.2020.104875
    [44]
    Zhu L L, Gao M M, Peh C K N, et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation[J]. Advanced Energy Materials,2018,8(16)-1702149.
    [45]
    Hu T, Li L X, Yang Y F, et al. A yolk@shell superhydrophobic/superhydrophilic solar evaporator for efficient and stable desalination[J]. Journal of Materials Chemistry A,2020,8(29):14736-14745. doi: 10.1039/D0TA04917D
    [46]
    Wang Y C, Zhang L B , Wang P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):1223-1230.
    [47]
    Lee J, Kim K, Park S H, et al. Macroporous photothermal bilayer evaporator for highly efficient and self-cleaning solar desalination[J]. Nano Energy,2020,77:105131. doi: 10.1016/j.nanoen.2020.105131
    [48]
    Yang J L, Pang Y S, Huang W X, et al. Functionalized graphene enables highly efficient solar thermal steam generation[J]. ACS Nano,2017,11(6):5510-5518. doi: 10.1021/acsnano.7b00367
    [49]
    Fu Y, Wang G, Mei T, et al. Accessible graphene aerogel for efficiently harvesting solar energy[J]. ACS Sustainable Chemistry & Engineering,2017,5(6):4665-4671.
    [50]
    Hu X Z, Xu W C, Zhou L, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun[J]. Advanced Materials,2017,29(5):1604031.
    [51]
    Wang H Q, Du A, Ji X J, et al. Enhanced photothermal conversion by hot-electron effect in ultrablack carbon aerogel for solar steam generation[J]. ACS Applied Materials & Interfaces,2019,11(45):42057-42065.
    [52]
    Storer D P, Phelps J L, Wu X, et al. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation[J]. ACS Applied Materials & Interfaces,2020,12(13):15279-15287.
    [53]
    Lou J W, Liu Y, Wang Z Y, et al. Bioinspired multifunctional paper-based rgo composites for solar-driven clean water generation[J]. ACS Applied Materials & Interfaces,2016,8:14628-14636.
    [54]
    Jiang Q S, Tian L M, Liu K K, et al. Bilayered biofoam for highly efficient solar steam generation[J]. Advanced Materials,2016,28:9400-9407. doi: 10.1002/adma.201601819
    [55]
    Shi L, Wang Y C, Zhang L B, et al. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation[J]. Journal of Materials Chemistry A,2017,5:16212-16219. doi: 10.1039/C6TA09810J
    [56]
    Li X Q, Xu W C, Tang M Y, et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113:13953-13958. doi: 10.1073/pnas.1613031113
    [57]
    Liu Z J, Song H M, Ji D X, et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper[J]. Global Challenge,2017,1:1600003. doi: 10.1002/gch2.201600003
    [58]
    Wang Z Z, Ye Q X, Liang X B, et al. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun[J]. Journal of Materials Chemistry A,2017,5:16359-16368. doi: 10.1039/C7TA03262E
    [59]
    Girel K V, Panarin A Y, Bandarenka H V, et al. Plasmonic silvered nanostructures on macroporous silicon decorated with graphene oxide for SERS-spectroscopy[J]. Nanotechnology,2018,29(39):395708. doi: 10.1088/1361-6528/aad250
    [60]
    Wang Y C, Wang C Z, Song X J, et al. A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation[J]. Journal of Materials Chemistry A,2018,6:963-971. doi: 10.1039/C7TA08972D
    [61]
    Tadepalli S, Yim J, Cao S S, et al. Metal-organic framework encapsulation for the preservation and photothermal enhancement of enzyme activity[J]. Small,2018,14(7):1702382. doi: 10.1002/smll.201702382
    [62]
    Zhou L, Tan Y L, Ji D X, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances,2016,2(4):1.
    [63]
    Wang X Z, He Y R, Liu X, et al. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes[J]. Applied Energy,2017,195:414-425. doi: 10.1016/j.apenergy.2017.03.080
    [64]
    Zhou L, Tan Y L, Wang J Y, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics,2016,10:393-398. doi: 10.1038/nphoton.2016.75
    [65]
    Chen M J, He Y R, Huang J, et al. Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles[J]. Energy Conversion and Management,2016,127:293-300. doi: 10.1016/j.enconman.2016.09.015
    [66]
    Sun W, Zhong G, Kubel C, et al. Size-tunable photothermal germanium nanocrystals[J]. Angewandte Chemie International Edition,2017,56(22):6329-6334. doi: 10.1002/anie.201701321
    [67]
    Li L, Wang C P, Huang Q, et al. A degradable hydrogel formed by dendrimer-encapsulated platinum nanoparticles and oxidized dextran for repeated photothermal cancer therapy[J]. Journal of Materials Chemistry B,2018,6(16):2474-2480. doi: 10.1039/C8TB00091C
    [68]
    Pala R A, Liu J S Q, Barnard E S, et al. Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells[J]. Nature Communications,2013,4:2095. doi: 10.1038/ncomms3095
    [69]
    Chen J X, Li B, Hu G X, et al. Integrated evaporator for efficient solar-driven interfacial steam generation[J]. Nano Letters,2020,20(8):6051-6058. doi: 10.1021/acs.nanolett.0c01999
    [70]
    Fu Y, Wang G, Ming X, et al. Oxygen plasma treated graphene aerogel as a solar absorber for rapid and efficient solar steam generation[J]. Carbon,2018,130:250-256. doi: 10.1016/j.carbon.2017.12.124
    [71]
    Zhu M W, Li Y J, Chen F J, et al. Plasmonic wood for high-efficiency solar steam generation[J]. Advanced Energy Materials,2018,8(4)-1701028.
    [72]
    Sharma B and Rabinal M K. Plasmon based metal-graphene nanocomposites for effective solar vaporization[J]. Journal of Alloys and Compounds,2017,690:57-62. doi: 10.1016/j.jallcom.2016.07.330
    [73]
    Zhang L L, Xing J, Wen X L, et al. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination[J]. Nanoscale,2017,9(35):12843-12849. doi: 10.1039/C7NR05149B
    [74]
    Huang X H, Jain P K, Elsayed I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles[J]. Lasers in Medical Science,2008,23(3):217-228. doi: 10.1007/s10103-007-0470-x
    [75]
    Jiang Q S, Chandar Y J, Cao S S, et al. Rapid, point-of-care, paper-based plasmonic biosensor for zika virus diagnosis[J]. Advanced Biosystems,2017,1(9):e1700096. doi: 10.1002/adbi.201700096
    [76]
    Wang J, Li Y Y, Deng L, et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles[J]. Advanced Materials,2017,29(3):1603730. doi: 10.1002/adma.201603730
    [77]
    Gao Z, Yang H P, LI J W, et al. Simultaneous evaporation and decontamination of water on a novel membrane under simulated solar light irradiation[J]. Applied Catalysis B: Environmental,2020,267(1):118695.
    [78]
    Xu Y, Ma J X, Han Y, et al. Multifunctional CuO nanowire mesh for highly efficient solar evaporation and water purification[J]. ACS Sustainable Chemistry & Engineering,2019,7(5):5476-5485.
    [79]
    Guo A K, Ming X, Fu Y, et al. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation[J]. ACS Applied Materials & Interfaces,2017,9(35):29958-29964. doi: 10.1021/acsami.7b07759
    [80]
    Wang X Q, Ou G, Wang N, et al. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination[J]. ACS Applied Materials Interfaces,2016,8(14):9194-9199. doi: 10.1021/acsami.6b02071
    [81]
    Zeng Y, Yao J F, Horri B A, et al. Solar evaporation enhancement using floating light-absorbing magnetic particles[J]. Energy & Environmental Science,2011,4(10):4074-4078.
    [82]
    Yang X D, Yang Y B, Fu L N, et al. An ultrathin flexible 2D membrane based on single-walled nanotube-MoS2 hybrid film for high-performance solar steam generation[J]. Advanced Functional Materials,2018,28(3)-1704505.
    [83]
    Liu F H, Zhao B Y, Wu W P, et al. Low cost, robust, environmentally friendly geopolymer-mesoporous carbon composites for efficient solar powered steam generation[J]. Advanced Functional Materials,2018,28(47)-1803266.
    [84]
    Yu F, Chen Z H, Guo Z Z, et al. Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator[J]. ACS Sustainable Chemistry & Engineering,2020,8(18):7139-7149.
    [85]
    Tahir Z S, Kim S D, Ullah F, et al. Highly efficient solar steam generation by glassy carbon foam coated with two-dimensional metal chalcogenides[J]. ACS Applied Materials & Interfaces,2020,12(2):2490-2496. doi: 10.1021/acsami.9b18589
    [86]
    Younis S A, Elsalamony R A, Tsang Y F, et al. Use of rice straw-based biochar for batch sorption of barium/strontium from saline water: protection against scale formation in petroleum/desalination industries[J]. Journal of Cleaner Production,2020,250:119442. doi: 10.1016/j.jclepro.2019.119442
    [87]
    Geng Y, Sun W, Ying P J, et al. Bioinspired fractal design of waste biomass‐derived solar–thermal materials for highly efficient solar evaporation[J]. Advanced Functional Materials,2020,31(3)-2007648.
    [88]
    Jia C, Li Y J, Yang Z, et al. Rich mesostructures derived from natural woods for solar steam generation[J]. Joule,2017,1(3):588-599. doi: 10.1016/j.joule.2017.09.011
    [89]
    Liao Y L, Chen J H, Zhang D N, et al. Lotus leaf as solar water evaporation devices[J]. Materials Letters,2019,240:92-95. doi: 10.1016/j.matlet.2018.12.133
    [90]
    Li J Y, Zhou X, Mu P, et al. Ultralight biomass porous foam with aligned hierarchical channels as salt-resistant solar steam generators[J]. ACS Applied Materials Interfaces,2020,12:798-806. doi: 10.1021/acsami.9b18398
    [91]
    Wu Q, Sundborg H, Andersson R, et al. Conductive biofoams of wheat gluten containing carbon nanotubes, carbon black or reduced graphene oxide[J]. RSC Advances,2017,7(30):18260-18269. doi: 10.1039/C7RA01082F
    [92]
    Yin Z, Wang H M, Jian M Q, et al. Extremely black vertically aligned carbon nanotube arrays for solar steam generation[J]. ACS Applied Materials Interfaces,2017,9(34):28596-28603. doi: 10.1021/acsami.7b08619
    [93]
    Liu K K, Jiang Q S, Tadepalli S, et al. Wood-graphene oxide composite for highly efficient solar steam generation and desalination[J]. ACS Applied Materials Interfaces,2017,9(8):7675-7681. doi: 10.1021/acsami.7b01307
    [94]
    Fang J, Liu J, Gu J J, et al. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation[J]. Chemistry of Materials,2018,30(18):6217-6221. doi: 10.1021/acs.chemmater.8b01702
    [95]
    Ren H Y, Tang M, Guan B L, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials[J]. Advanced Materials,2017,29(38):1702590. doi: 10.1002/adma.201702590
    [96]
    Xue G B, Liu K, Chen Q, et al. Robust and low-cost flame-treated wood for high-performance solar steam generation[J]. ACS Applied Materials Interfaces,2017,9(17):15052-15057. doi: 10.1021/acsami.7b01992
    [97]
    Kuang Y D, Chen C J, He S M, et al. A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced Materials,2019,31(23):e1900498. doi: 10.1002/adma.201900498
    [98]
    Guo Y H, Lu H Y, Zhao F, et al. Biomass-derived hybrid hydrogel evaporators for cost-effective solar water purification[J]. Advanced Materials,2020,32(11):e1907061. doi: 10.1002/adma.201907061
    [99]
    Sheng C M, Yang N, Yan Y T, et al. Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation[J]. Applied Thermal Engineering,2020,167(11):114712.
    [100]
    Zhang C, Xiao P, Ni F, et al. Converting pomelo peel into eco-friendly and low-consumption photothermic biomass sponge toward multifunctioal solar-to-heat conversion[J]. ACS Sustainable Chemistry & Engineering,2020,8(13):5328-5337.
    [101]
    Xu N, Hu X Z, Xu W C, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials,2017,29(28):1-5.
    [102]
    Li K, Chang T H, Li Z P, et al. Biomimetic mxene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management[J]. Advanced Energy Materials,2019,9(34):1901687. doi: 10.1002/aenm.201901687
    [103]
    Zhang P P, Li J, Lv L X, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano,2017,11(5):5087-5093. doi: 10.1021/acsnano.7b01965
    [104]
    Song H M, Liu Y H, Liu Z J, et al. Cold vapor generation beyond the input solar energy limit[J]. Advanced Science,2018,5(8):1800222. doi: 10.1002/advs.201800222
    [105]
    Liu H, Chen C J, Chen G, et al. High-performance solar steam device with layered channels: artificial tree with a reversed design[J]. Advanced Energy Materials,2018,8(8)-1701616.
    [106]
    Wang C B, Wang J L, LI Z T, et al. Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency[J]. Journal of Materials Chemistry A,2020,8(19):9528-9535. doi: 10.1039/D0TA01439G
    [107]
    Song L, Mu P, Geng L, et al. A novel salt-rejecting linen fabric-based solar evaporator for stable and efficient water desalination under highly saline water[J]. ACS Sustainable Chemistry & Engineering,2020,8(31):11845-11852.
    [108]
    Zhang Q, Hu R, Chen Y L, et al. Banyan-inspired hierarchical evaporators for efficient solar photothermal conversion[J]. Applied Energy,2020,276(7):115545.
    [109]
    Sun Y K, Zong X P, Qu D, et al. Water management by hierarchical structures for highly efficient solar water evaporation[J]. Journal of Materials Chemistry A,2021,9(11):7122-7128. doi: 10.1039/D1TA00113B
    [110]
    Wang X, Gan Q M, Chen R, et al. Water delivery channel design in solar evaporator for efficient and durable water evaporation with salt rejection[J]. ACS Sustainable Chemistry & Engineering,2020,8(21):7753-7761.
    [111]
    Li T, Liu H, Zhao X P, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport[J]. Advanced Functional Materials,2018,28(16):1707134. doi: 10.1002/adfm.201707134
    [112]
    Zhang W, Zhang G, Ji Q H, et al. Capillary-flow-optimized heat localization induced by an air-enclosed three-dimensional hierarchical network for elevated solar evaporation[J]. ACS Applied Materials Interfaces,2019,11(10):9974-9983. doi: 10.1021/acsami.8b21800
    [113]
    Wu L, Dong Z C, Cai Z R, et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization[J]. Nature Communications,2020,11(1):521. doi: 10.1038/s41467-020-14366-1
    [114]
    Hong S, Shi Y, Li R Y, et al. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy[J]. ACS Applied Materials Interfaces,2018,10(34):28517-28524. doi: 10.1021/acsami.8b07150
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article Views(2184) PDF Downloads(267) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return