Volume 36 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
WU Ni, CHE Sai, LI Hua-wei, WANG Chao-nan, TIAN Xiao-juan, LI Yong-feng. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications. New Carbon Mater., 2021, 36(5): 911-929. doi: 10.1016/S1872-5805(21)60089-6
Citation: WU Ni, CHE Sai, LI Hua-wei, WANG Chao-nan, TIAN Xiao-juan, LI Yong-feng. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications. New Carbon Mater., 2021, 36(5): 911-929. doi: 10.1016/S1872-5805(21)60089-6

A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications

doi: 10.1016/S1872-5805(21)60089-6
More Information
  • Author Bio:

    吴 妮. E-mail: 920405874@qq.com

  • Corresponding author: LI Yong-feng, Professor. E-mail: yfli@cup.edu.cn
  • Received Date: 2021-04-30
  • Rev Recd Date: 2021-06-28
  • Available Online: 2021-09-03
  • Publish Date: 2021-10-01
  • As the power consumption and heat generation of electronic devices continue to increase, higher demands are being placed on thermal management materials for heat dissipation. Graphene has been widely used as a thermally conductive filler to improve the thermal conductivity of polymers. However, the poor dispersibility of graphene nanoplates in polymers dramatically limits their practical use in thermal management. A promising strategy to increase the thermal conductivity of polymer composites is to construct interconnected three-dimensional graphene networks. This review summarizes the recent advances in the construction and applications of three-dimensional graphene-based polymer composites and ways to improve their thermal conductivity. The current challenges and prospects for the preparation and applications of these materials are considered.
  • loading
  • [1]
    Zhang F, Feng Y Y, Feng W. Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms[J]. Mater Sci Eng R Rep,2020,142:100580. doi: 10.1016/j.mser.2020.100580
    [2]
    Guo X X, Cheng S J, Cai W W, et al. A review of carbon-based thermal interface materials: mechanism, thermal measurements and thermal properties[J]. Mater Des,2021,209:109936. doi: 10.1016/j.matdes.2021.109936
    [3]
    He X H, Wang Y C. Recent advances in the rational design of thermal conductive polymer composites[J]. Ind Eng Chem Res,2021,60(3):1137-1154. doi: 10.1021/acs.iecr.0c05509
    [4]
    Guo Y Q, Ruan K P, Shi X T, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review[J]. Compos Sci Technol,2020,193:108134. doi: 10.1016/j.compscitech.2020.108134
    [5]
    Huang X Y, Zhi C Y, Lin Y, et al. Thermal conductivity of graphene-based polymer nanocomposites[J]. Mater Sci Eng R Rep,2020,142:100577. doi: 10.1016/j.mser.2020.100577
    [6]
    Fang H M, Bai S L, Wong C P. Microstructure engineering of graphene towards highly thermal conductive composites[J]. Compos Part A Appl Sci Manuf,2018,112:216-238. doi: 10.1016/j.compositesa.2018.06.010
    [7]
    Niu H Y, Ren Y J, Guo H C, et al. Recent progress on thermally conductive and electrical insulating rubber composites: Design, processing and applications[J]. Compos Commun,2020,22:100430. doi: 10.1016/j.coco.2020.100430
    [8]
    Salzano de Luna M, Wang Y, Zhai T, et al. Nanocomposite polymeric materials with 3D graphene-based architectures: from design strategies to tailored properties and potential applications[J]. Prog Polym Sci,2019,89:213-249. doi: 10.1016/j.progpolymsci.2018.11.002
    [9]
    Zhan H F, Nie Y H, Chen Y N, et al. Thermal transport in 3D nanostructures[J]. Adv Funct Mater,2020,30(8):1903841. doi: 10.1002/adfm.201903841
    [10]
    Weng D D, Song L L, Li W X, et al. Review on synthesis of three-dimensional graphene skeletons and their absorption performance for oily wastewater[J]. Environ Sci Pollut Res,2020:1-19.
    [11]
    Ma Y L, Chen J, Hu Y X, et al. Synthesis of three-dimensional graphene-based materials for applications in energy storage[J]. JOM,2020,72(6):2445-2459. doi: 10.1007/s11837-020-04074-y
    [12]
    Kim J E, Oh J H, Kotal M, et al. Self-assembly and morphological control of three-dimensional macroporous architectures built of two-dimensional materials[J]. Nano Today,2017,14:100-123. doi: 10.1016/j.nantod.2017.04.008
    [13]
    Sun Z X, Fang S Y, Hu Y H. 3D graphene materials: from understanding to design and synthesis control[J]. Chem Rev,2020,120(18):10336-10453. doi: 10.1021/acs.chemrev.0c00083
    [14]
    Zhang X, Zhao N, He C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design-A review[J]. Prog Mater Sci,2020,113:100672. doi: 10.1016/j.pmatsci.2020.100672
    [15]
    Li Z, Liu Z, Sun H Y, et al. Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene[J]. Chem Rev,2015,115(15):7046-7117. doi: 10.1021/acs.chemrev.5b00102
    [16]
    Xiao X Y, Beechem T E, Brumbach M T, et al. Lithographically defined three-dimensional graphene structures[J]. ACS Nano,2012,6(4):3573-3579. doi: 10.1021/nn300655c
    [17]
    Lavin-Lopez M P, Fernandez-Diaz M, Sanchez-Silva L, et al. Improving the growth of monolayer CVD-graphene over polycrystalline iron sheets[J]. New J Chem,2017,41(12):5066-5074. doi: 10.1039/C7NJ00281E
    [18]
    Zhan N, Wang G P, Liu J L. Cobalt-assisted large-area epitaxial graphene growth in thermal cracker enhanced gas source molecular beam epitaxy[J]. Appl Phys A,2011,105(2):341-345. doi: 10.1007/s00339-011-6612-9
    [19]
    Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat Mater,2011,10(6):424-428. doi: 10.1038/nmat3001
    [20]
    Kordatos A, Kelaidis N, Giamini S A, et al. AB stacked few layer graphene growth by chemical vapor deposition on single crystal Rh (1 1 1) and electronic structure characterization[J]. Appl Surf Sci,2016,369:251-256. doi: 10.1016/j.apsusc.2016.02.023
    [21]
    Koren E, Sutter E, Bliznakov S, et al. Isolation of high quality graphene from Ru by solution phase intercalation[J]. Appl Phys Lett,2013,103(12):121602. doi: 10.1063/1.4821269
    [22]
    Seah C M, Chai S P, Mohamed A R. Mechanisms of graphene growth by chemical vapour deposition on transition metals[J]. Carbon,2014,70:1-21. doi: 10.1016/j.carbon.2013.12.073
    [23]
    Zhou M, Lin T Q, Huang F Q, et al. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage[J]. Adv Funct Mater,2013,23(18):2263-2269. doi: 10.1002/adfm.201202638
    [24]
    Ning G Q, Fan Z J, Wang G, et al. Gram-scale synthesis of nanomesh graphene with high surface area and its application in supercapacitor electrodes[J]. Chem Comm,2011,47(21):5976-5978. doi: 10.1039/c1cc11159k
    [25]
    Tang C, Li B Q, Zhang Q, et al. CaO‐templated growth of hierarchical porous graphene for high‐power lithium–sulfur battery applications[J]. Adv Funct Mater,2016,26(4):577-585. doi: 10.1002/adfm.201503726
    [26]
    Chen K, Zhang F, Sun J Y, et al. Growth of defect-engineered graphene on manganese oxides for Li-ion storage[J]. Energy Stor Mater,2018,12:110-118. doi: 10.1016/j.ensm.2017.12.001
    [27]
    Huang H N, Bi H, Zhou M, et al. A three-dimensional elastic macroscopic graphene network for thermal management application[J]. J Mater Chem A,2014,2(43):18215-18218. doi: 10.1039/C4TA03801K
    [28]
    Zhang X F, Yeung K K, Gao Z L, et al. Exceptional thermal interface properties of a three-dimensional graphene foam[J]. Carbon,2014,66:201-209. doi: 10.1016/j.carbon.2013.08.059
    [29]
    Zhou H L Z, Wang H J, Du X S, et al. Facile fabrication of large 3D graphene filler modified epoxy composites with improved thermal conduction and tribological performance[J]. Carbon,2018,139:1168-1177. doi: 10.1016/j.carbon.2018.07.059
    [30]
    Wu Z H, Xu C, Ma C Q, et al. Synergistic effect of aligned graphene nanosheets in graphene foam for high‐performance thermally conductive composites[J]. Adv Mater,2019,31(19):1900199. doi: 10.1002/adma.201900199
    [31]
    Chen N, Pan Q M. Versatile fabrication of ultralight magnetic foams and application for oil–water separation[J]. ACS Nano,2013,7(8):6875-6883. doi: 10.1021/nn4020533
    [32]
    Chen J Z, Xu J L, Zhou S, et al. Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors[J]. Nano Energy,2016,25:193-202. doi: 10.1016/j.nanoen.2016.04.037
    [33]
    Wu W H, Huang X Y, Li K, et al. A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion[J]. Appl Energy,2017,190:474-480. doi: 10.1016/j.apenergy.2016.12.159
    [34]
    Li Y, Shen B, Pei X L, et al. Ultrathin carbon foams for effective electromagnetic interference shielding[J]. Carbon,2016,100:375-385. doi: 10.1016/j.carbon.2016.01.030
    [35]
    Liu Z D, Chen Y P, Li Y F, et al. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement[J]. Nanoscale,2019,11(38):17600-17606. doi: 10.1039/C9NR03968F
    [36]
    Dai W, Lv L, Ma T F, et al. Maruyama S, Lin C T. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management[J]. Adv Sci,2021:2003734.
    [37]
    Qin M M, Xu Y X, Cao R, et al. Efficiently controlling the 3D thermal conductivity of a polymer nanocomposite via a hyperelastic double‐continuous network of graphene and sponge[J]. Adv Funct Mater,2018,28(45):1805053. doi: 10.1002/adfm.201805053
    [38]
    Mortazavi Bohayra, Bardon J, Ahzi S. Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study[J]. Comput Mater Sci,2013,69:100-106. doi: 10.1016/j.commatsci.2012.11.035
    [39]
    Min P, Liu J, Li X F, et al. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real‐time and fast‐charging solar‐thermal energy conversion[J]. Adv Funct Mater,2018,28(51):1805365. doi: 10.1002/adfm.201805365
    [40]
    Yao Y M, Sun J J, Zeng X L, et al. Construction of 3D skeleton for polymer composites achieving a high thermal conductivity[J]. Small,2018,14(13):1704044. doi: 10.1002/smll.201704044
    [41]
    Zhang W Y, Kong Q Q, Tao Z C, et al. 3D thermally cross‐linked graphene aerogel-enhanced silicone rubber elastomer as thermal interface material[J]. Adv Mater Interfaces,2019,6(12):1900147. doi: 10.1002/admi.201900147
    [42]
    Shao L B, Shi L Y, Li X H, et al. Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites[J]. Compos Sci Technol,2016,135:83-91. doi: 10.1016/j.compscitech.2016.09.013
    [43]
    Wang X L, Cheng X M, Li D, et al. Preparation a three-dimensional hierarchical graphene/stearic acid as a phase change materials for thermal energy storage[J]. Mater Res Express,2020,7(9):095506. doi: 10.1088/2053-1591/abb69e
    [44]
    Wang Z Y, Shen X, Garakani M A, et al. Graphene aerogel/epoxy composites with exceptional anisotropic structure and properties[J]. ACS Appl Mater Interfaces,2015,7(9):5538-5549. doi: 10.1021/acsami.5b00146
    [45]
    Li J C, Zhao X Y, Wu W J, et al. Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability[J]. Carbon,2020,162:46-55. doi: 10.1016/j.carbon.2020.02.012
    [46]
    Ai W, Du Z Z, Liu J Q, et al. Formation of graphene oxide gel via the π-stacked supramolecular self-assembly[J]. RSC Adv,2012,2(32):12204-12209. doi: 10.1039/c2ra21179c
    [47]
    Zhang F, Lu Y H, Yang X, et al. A Flexible and High‐Voltage Internal Tandem Supercapacitor Based on Graphene‐Based Porous Materials with Ultrahigh Energy Density[J]. Small,2014,10(11):2285-2292. doi: 10.1002/smll.201303240
    [48]
    Zu S Z, Han B H. Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel[J]. J Phys Chem C,2009,113(31):13651-13657. doi: 10.1021/jp9035887
    [49]
    Wang Y J, Xia S, Li H, et al. Unprecedentedly tough, folding‐endurance, and multifunctional graphene‐based artificial nacre with predesigned 3D nanofiber network as matrix[J]. Adv Funct Mater,2019,29(38):1903876. doi: 10.1002/adfm.201903876
    [50]
    Zhang C, Huang R J, Wang Y G, et al. Self-assembled boron nitride nanotube reinforced graphene oxide aerogels for dielectric nanocomposites with high thermal management capability[J]. ACS Appl Mater Interfaces,2019,12(1):1436-1443.
    [51]
    He J, Wang H, Qu Q Q, et al. Self-assembled three-dimensional structure with optimal ratio of GO and SiC particles effectively improving the thermal conductivity and reliability of epoxy composites[J]. Compos Commun,2020,22:100448. doi: 10.1016/j.coco.2020.100448
    [52]
    Nguyen N, Melamed E, Park J G, et al. Direct printing of thermal management device using low‐cost composite ink[J]. Macromol Mater Eng,2017,302(10):1700135. doi: 10.1002/mame.201700135
    [53]
    Li J C, Zhao X Y, Wu W J, et al. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity[J]. Chem Eng J,2021,415:129054. doi: 10.1016/j.cej.2021.129054
    [54]
    Li C, Zeng X L, Tan L Y, et al. Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity of polymer[J]. Chem Eng J,2019,368:79-87. doi: 10.1016/j.cej.2019.02.110
    [55]
    Yang L, Wang Z Q, Ji Y C, et al. Highly ordered 3d graphene-based polymer composite materials fabricated by “particle-constructing” method and their outstanding conductivity[J]. Macromolecules,2014,47(5):1749-1756. doi: 10.1021/ma402364r
    [56]
    Guan L Z, Zhao L, Wan Y J, et al. Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications[J]. Nanoscale,2018,10(31):14788-14811. doi: 10.1039/C8NR03044H
    [57]
    Yuan H, Wang Y, Li T, et al. Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network[J]. Nanoscale,2019,11(23):11360-11368. doi: 10.1039/C9NR02491C
    [58]
    Wu K, Lei C X, Huang R, et al. Design and preparation of a unique segregated double network with excellent thermal conductive property[J]. ACS Appl Mater Interfaces,2017,9(8):7637-7647. doi: 10.1021/acsami.6b16586
    [59]
    Thiyagarajan P, Yan Z, Yoon J C, et al. Thermal conductivity reduction in three dimensional graphene-based nanofoam[J]. RSC adv,2015,5(120):99394-99397. doi: 10.1039/C5RA19130K
    [60]
    Pettes M T, Ji H X, Ruoff R S, et al. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite[J]. Nano Lett,2012,12(6):2959-2964. doi: 10.1021/nl300662q
    [61]
    Xin G Q, Yao T K, Sun H T, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science,2015,349(6252):1083-1087. doi: 10.1126/science.aaa6502
    [62]
    Zhang Y P, Li D L, Tan X J, et al. High quality graphene sheets from graphene oxide by hot-pressing[J]. Carbon,2013,54:143-148. doi: 10.1016/j.carbon.2012.11.012
    [63]
    Li X H, Liu P F, Li X F, et al. Vertically aligned, ultralight and highly compressive all-graphitized graphene aerogels for highly thermally conductive polymer composites[J]. Carbon,2018,140:624-633. doi: 10.1016/j.carbon.2018.09.016
    [64]
    Loeblein M, Tsang S H, Pawlik M, et al. High-density 3D-boron nitride and 3D-graphene for high-performance nano–thermal interface material[J]. ACS Nano,2017,11(2):2033-2044. doi: 10.1021/acsnano.6b08218
    [65]
    Shen X, Wang Z Y, Wu Y, et al. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance[J]. Mater Horizons,2018,5(2):275-284. doi: 10.1039/C7MH00984D
    [66]
    Shen X, Kim J K. 3D graphene and boron nitride structures for nanocomposites with tailored thermal conductivities: recent advances and perspectives[J]. Functional Composites and Structures,2020,2(2):022001. doi: 10.1088/2631-6331/ab953a
    [67]
    Yang J, Li X F, Han S, et al. Air-dried, high-density graphene hybrid aerogels for phase change composites with exceptional thermal conductivity and shape stability[J]. J Mater Chem A,2016,4(46):18067-18074. doi: 10.1039/C6TA07869A
    [68]
    An F, Li X F, Min P, et al. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities[J]. ACS Appl Mater Interfaces,2018,10(20):17383-17392. doi: 10.1021/acsami.8b04230
    [69]
    Hu D C, Liu H Q, Ma W S. Rational design of nanohybrids for highly thermally conductive polymer composites[J]. Compos Commun,2020,21:100427. doi: 10.1016/j.coco.2020.100427
    [70]
    Zhao Y H, Zhang Y F, Bai S L, et al. Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties[J]. Compos B Eng,2016,94:102-108. doi: 10.1016/j.compositesb.2016.03.056
    [71]
    Zhao Y H, Zhang Y F, Wu Z K, et al. Synergic enhancement of thermal properties of polymer composites by graphene foam and carbon black[J]. Compos B Eng,2016,84:52-58. doi: 10.1016/j.compositesb.2015.08.074
    [72]
    Kholmanov I, Kim J, Ou E, et al. Continuous carbon nanotube–ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials[J]. ACS Nano,2015,9(12):11699-11707. doi: 10.1021/acsnano.5b02917
    [73]
    Li J C, Zhao X Y, Zhang Z X, et al. Construction of interconnected Al2O3 doped rGO network in natural rubber nanocomposites to achieve significant thermal conductivity and mechanical strength enhancement[J]. Compos Sci Technol,2020,186:107930. doi: 10.1016/j.compscitech.2019.107930
    [74]
    Renteria J, Legedza S, Salgado R, et al. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications[J]. Mater Des,2015,88:214-221. doi: 10.1016/j.matdes.2015.08.135
    [75]
    Zhang Y H, Heo Y J, Son Y R, et al. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials[J]. Carbon,2019,142:445-460. doi: 10.1016/j.carbon.2018.10.077
    [76]
    Li S T, Yu S H, Feng Y. Progress in and prospects for electrical insulating materials[J]. High Volt,2016,1(3):122-129. doi: 10.1049/hve.2016.0034
    [77]
    Hsiao Mi C, Ma C C M, Chiang J C, et al. Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide–silica hybrid nanosheets[J]. Nanoscale,2013,5(13):5863-5871. doi: 10.1039/c3nr01471a
    [78]
    Sun R H, Yao H, Zhang H B, et al. Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites[J]. Compos Sci Technol,2016,137:16-23. doi: 10.1016/j.compscitech.2016.10.017
    [79]
    Fang H M, Zhao Y H, Zhang Y F, et al. Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties[J]. ACS Appl Mater Interfaces,2017,9(31):26447-26459. doi: 10.1021/acsami.7b07650
    [80]
    Song N, Cao D L, Luo X, et al. Highly thermally conductive polypropylene/graphene composites for thermal management[J]. Compos Part A Appl Sci Manuf,2020,135:105912. doi: 10.1016/j.compositesa.2020.105912
    [81]
    Liu Y J, Lu J Y, Cui Y B. Improved thermal conductivity of epoxy resin by graphene–nickel three-dimensional filler[J]. Carbon Resources Conversion,2020,3:29-35. doi: 10.1016/j.crcon.2019.12.003
    [82]
    Li Y, Zhu Y F, Jiang G P, et al. Boosting the heat dissipation performance of graphene/polyimide flexible carbon film via enhanced through‐plane conductivity of 3D hybridized structure[J]. Small,2020,16(8):1903315. doi: 10.1002/smll.201903315
    [83]
    Vasu A, Hagos F Y, Noor M M, et al. Corrosion effect of phase change materials in solar thermal energy storage application[J]. Renew Sust Energ Rev,2017,76:19-33. doi: 10.1016/j.rser.2017.03.018
    [84]
    Liu P F, An F, Lu X Y, et al. Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels[J]. Compos Sci Technol,2021,201:108492. doi: 10.1016/j.compscitech.2020.108492
    [85]
    Yang J, Qi G Q, Bao R Y, et al. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials[J]. Energy Stor Mater,2018,13:88-95. doi: 10.1016/j.ensm.2017.12.028
    [86]
    Yang Jie, Qi G Q, Liu Y, et al. Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage[J]. Carbon,2016,100:693-702. doi: 10.1016/j.carbon.2016.01.063
    [87]
    Liao H H, Chen W H, Liu Y, et al. A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability[J]. Compos Sci Technol,2020,189:108010. doi: 10.1016/j.compscitech.2020.108010
    [88]
    Sun K Y, Dong H S, Kou Y, et al. Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications[J]. Chem Eng J,2021,149:129637.
    [89]
    Cheng Y H, Zhou S B, Hu P, et al. Enhanced mechanical, thermal, and electric properties of graphene aerogels via supercritical ethanol drying and high-temperature thermal reduction[J]. Sci Rep,2017,7(1):1-11. doi: 10.1038/s41598-016-0028-x
    [90]
    Wang, K L, Wang W, Wang H B, et al. 3D graphene foams/epoxy composites with double-sided binder polyaniline interlayers for maintaining excellent electrical conductivities and mechanical properties[J]. Compos. Part A Appl Sci Manuf,2018,110:246-257. doi: 10.1016/j.compositesa.2018.05.001
    [91]
    Song S Q, Zhang Y. Construction of a 3D multiple network skeleton by the thiol-Michael addition click reaction to fabricate novel polymer/graphene aerogels with exceptional thermal conductivity and mechanical properties[J]. J Mater Chem A,2017,5(42):22352-22360. doi: 10.1039/C7TA07173F
    [92]
    Fang H M, Guo H C, Hu Y R, et al. In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity[J]. Compos Sci Technol,2020,188:107975. doi: 10.1016/j.compscitech.2019.107975
    [93]
    Lian G, Tuan C C, Li L Y, et al. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading[J]. Chem Mater,2016,28(17):6096-6104. doi: 10.1021/acs.chemmater.6b01595
    [94]
    An F, Li X F, Min P, et al. Highly anisotropic graphene/boron nitride hybrid aerogels with long-range ordered architecture and moderate density for highly thermally conductive composites[J]. Carbon,2018,126:119-127. doi: 10.1016/j.carbon.2017.10.011
    [95]
    Li A, Zhang C, Zhang Y F. RGO/TPU composite with a segregated structure as thermal interface material[J]. Compos Part A Appl Sci Manuf,2017,101:108-114. doi: 10.1016/j.compositesa.2017.06.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article Views(1562) PDF Downloads(205) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return