Volume 36 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
LI Hao-liang, XIAO Shu-ning, YU Hong-liu, XUE Yu-hua, YANG Jun-he. A review of graphene-based films for heat dissipation. New Carbon Mater., 2021, 36(5): 897-910. doi: 10.1016/S1872-5805(21)60092-6
Citation: LI Hao-liang, XIAO Shu-ning, YU Hong-liu, XUE Yu-hua, YANG Jun-he. A review of graphene-based films for heat dissipation. New Carbon Mater., 2021, 36(5): 897-910. doi: 10.1016/S1872-5805(21)60092-6

A review of graphene-based films for heat dissipation

doi: 10.1016/S1872-5805(21)60092-6
More Information
  • Author Bio:

    李昊亮,博士. E-mail:leon_hl1989@163.com

  • Corresponding author: YANG Jun-he, Professor. E-mail: yjh@gench.edu.cn
  • Received Date: 2021-08-16
  • Rev Recd Date: 2021-09-03
  • Available Online: 2021-09-14
  • Publish Date: 2021-10-01
  • Graphene, because of its outstanding thermal and electrical conductivity, has been regarded as one of the promising materials for heat dissipation and electromagnetic shielding, and has recently attracted widespread attention. We summarize the current research status of reduced graphene oxide films, graphene films and graphene-based composite films for thermal management, including their preparation and applications. The key factors that determine the thermal conductivity of graphene films are discussed to figure out the main challenges, especially in the scalable manufacture of graphene-based films in the near future.
  • loading
  • [1]
    Alipanah M, Moghaddam S. Ultra-low pressure drop membrane-based heat sink with 1000 W/cm2 cooling capacity and 100% exit vapor quality[J]. International Journal of Heat and Mass Transfer,2020,161:120312. doi: 10.1016/j.ijheatmasstransfer.2020.120312
    [2]
    Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials,2011,10(8):569-581. doi: 10.1038/nmat3064
    [3]
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [4]
    Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters,2006,6(1):96-100. doi: 10.1021/nl052145f
    [5]
    Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters,2001,87(21):215502. doi: 10.1103/PhysRevLett.87.215502
    [6]
    Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [7]
    Liu Z, Li Z, Xu Z, et al. Wet-spun continuous graphene films[J]. Chemistry of Materials,2014,26(23):6786-6795. doi: 10.1021/cm5033089
    [8]
    Zhang M, Huang L, Chen J, et al. Ultratough, ultrastrong, and highly conductive graphene films with arbitrary sizes[J]. Advanced Materials,2014,26(45):7588-7592. doi: 10.1002/adma.201403322
    [9]
    Zhang M, Wang Y, Huang L, et al. Multifunctional pristine chemically modified graphene films as strong as stainless steel[J]. Advanced Materials,2015,27:6708-6713. doi: 10.1002/adma.201503045
    [10]
    Guo Y, Dun C, Xu J, et al. Ultrathin, washable, and large-area graphene papers for personal thermal management[J]. Small,2017,13(44
    [11]
    Xin G, Yao T, Sun H, et al. Highly thermally conductive and mechanically strong graphene fibers[J]. Science,2015,349(6252):1083-1087. doi: 10.1126/science.aaa6502
    [12]
    Wang R, Xu Z, Zhuang J, et al. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters[J]. Advanced Electronic Materials,2017,3(2):1600425. doi: 10.1002/aelm.201600425
    [13]
    Zhang L B, Wang J Q, Wang H G, et al. Preparation, mechanical and thermal properties of functionalized graphene/polyimide nanocomposites[J]. Composites Part A: Applied Science and Manufacturing,2012,43(9):1537-1545. doi: 10.1016/j.compositesa.2012.03.026
    [14]
    Kong Q Q, Liu Z, Gao J G, et al. Hierarchical graphene-carbon fiber composite paper as a flexible lateral heat spreader[J]. Advanced Functional Materials,2014,24(27):4222-4228. doi: 10.1002/adfm.201304144
    [15]
    Wang Y, Zhang X, Ding X, et al. Stitching graphene sheets with graphitic carbon nitride: Constructing a highly thermally conductive rGO/g-C3N4 film with excellent heating capability[J]. ACS Applied Materials & Interfaces,2021,13(5):6699-6709.
    [16]
    Kim C, An S, Lee J, et al. Engineering graphene oxide laminate membranes for enhanced flux and boron treatment with polyethylenimine (PEI) polymers[J]. ACS Applied Materials & Interfaces,2019,11(1):924-929.
    [17]
    Malekpour H, Chang K H, Chen J C, et al. Thermal conductivity of graphene laminate[J]. Nano Letters,2014,14(9):5155-5161. doi: 10.1021/nl501996v
    [18]
    Nika D, Ghosh S, Pokatilov E, et al. Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite[J]. Applied Physics Letters,2009,94(20):203103. doi: 10.1063/1.3136860
    [19]
    Shahil K M, Balandin A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters,2012,12(2):861-867. doi: 10.1021/nl203906r
    [20]
    Gao Z, Zhang Y, Fu Y, et al. Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots[J]. Carbon,2013,61:342-348. doi: 10.1016/j.carbon.2013.05.014
    [21]
    Wu T, Zhang X, Yuan Q, et al. Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu–Ni alloys[J]. Nature Materials,2016,15(1):43. doi: 10.1038/nmat4477
    [22]
    Xu X, Zhang Z, Qiu L, et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply[J]. Nature Nanotechnology,2016,11(11):930. doi: 10.1038/nnano.2016.132
    [23]
    Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448(7152):457. doi: 10.1038/nature06016
    [24]
    Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials,2014,26(26):4521-4526. doi: 10.1002/adma.201400951
    [25]
    Peng L, Xu Z, Liu Z, et al. Ultrahigh thermal conductive yet superflexible graphene films[J]. Advanced Materials,2017,29(27):1700589. doi: 10.1002/adma.201700589
    [26]
    Hu D, Gong W, Di J, et al. Strong graphene-interlayered carbon nanotube films with high thermal conductivity[J]. Carbon,2017,118:659-665. doi: 10.1016/j.carbon.2017.04.005
    [27]
    Zhou E, Xi J, Guo Y, et al. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films[J]. Carbon,2018,133:316-322. doi: 10.1016/j.carbon.2018.03.023
    [28]
    Huang Y, Gong Q, Zhang Q, et al. Fabrication and molecular dynamics analyses of highly thermal conductive reduced graphene oxide films at ultra-high temperatures[J]. Nanoscale,2017,9(6):2340-2347. doi: 10.1039/C6NR06653D
    [29]
    Fu Y, Hansson J, Liu Y, et al. Graphene related materials for thermal management[J]. 2D Materials,2019,7(1):012001. doi: 10.1088/2053-1583/ab48d9
    [30]
    Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials,2014,24(28):4542-4548. doi: 10.1002/adfm.201400079
    [31]
    Wang N, Samani M K, Li H, et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering[J]. Small,2018:e1801346.
    [32]
    Zhang X, Guo Y, Liu Y, et al. Ultrathick and highly thermally conductive graphene films by self-fusion[J]. Carbon,2020,167:249-255. doi: 10.1016/j.carbon.2020.05.051
    [33]
    Chen S, Wang Q, Zhang M, et al. Scalable production of thick graphene film for next generation thermal management application[J]. Carbon,2020,167:270-277. doi: 10.1016/j.carbon.2020.06.030
    [34]
    Liu Y, Li P, Wang F, et al. Rapid roll-to-roll production of graphene films using intensive Joule heating[J]. Carbon,2019,155:462-468. doi: 10.1016/j.carbon.2019.09.021
    [35]
    Jeon I Y, Bae S Y, Seo J M, et al. Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling[J]. Advanced Functional Materials,2015,25(45):6961-6975. doi: 10.1002/adfm.201502214
    [36]
    Paton K R, Varrla E, Backes C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials,2014,13(6):624. doi: 10.1038/nmat3944
    [37]
    Xia Z Y, Pezzini S, Treossi E, et al. The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: A nanoscale study[J]. Advanced Functional Materials,2013,23:4684-4693.
    [38]
    Rangappa D, Sone K, Wang M, et al. Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation[J]. Chemistry-A European Journal,2010,16(22):6488-6494. doi: 10.1002/chem.201000199
    [39]
    Moon J Y, Kim M, Kim S I, et al. Layer-engineered large-area exfoliation of graphene[J]. Science Advances,2020,6(44):eabc6601. doi: 10.1126/sciadv.abc6601
    [40]
    Teng C, Xie D, Wang J, et al. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene[J]. Advanced Functional Materials,2017,27(20):1700240. doi: 10.1002/adfm.201700240
    [41]
    Ding J, Zhao H, Wang Q, et al. An ultrahigh thermal conductive graphene flexible paper[J]. Nanoscale,2017,9(43):16871-16878. doi: 10.1039/C7NR06667H
    [42]
    Wu T, Xu Y, Wang H, et al. Efficient and inexpensive preparation of graphene laminated film with ultrahigh thermal conductivity[J]. Carbon,2021,171:639-645. doi: 10.1016/j.carbon.2020.09.039
    [43]
    Wei Q, Pei S, Qian X, et al. Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film[J]. Advanced Materials,2020,32(14):e1907411. doi: 10.1002/adma.201907411
    [44]
    Jeon I Y, Shin Y R, Sohn G J, et al. Edge-carboxylated graphene nanosheets via ball milling[J]. Proceedings of the National Academy of Sciences,2012,109(15):5588-5593. doi: 10.1073/pnas.1116897109
    [45]
    Hsieh C T, Lee C E, Chen Y F, et al. Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets[J]. Nanoscale,2015,7(44):18663-18670. doi: 10.1039/C5NR04993H
    [46]
    Li H, Miao J, Wu X, et al. In-Situ “molecular welding” preparation of graphene/polyimide hybrid film with superior thermal conductivity and flexibility[J]. Journal of Polymer Science Part B: Polymer Physics,2018,56(17):1215-1223. doi: 10.1002/polb.24640
    [47]
    Li Y, Zhu Y, Jiang G, et al. Boosting the heat dissipation performance of graphene/polyimide flexible carbon film via enhanced through-plane conductivity of 3D hybridized structure[J]. Small,2020,16(8):1903315. doi: 10.1002/smll.201903315
    [48]
    Zhang Y, Han H, Wang N, et al. Improved heat spreading performance of functionalized graphene in microelectronic device application[J]. Advanced Functional Materials,2015,25(28):4430-4435. doi: 10.1002/adfm.201500990
    [49]
    Li H, Dai S, Miao J, et al. Enhanced thermal conductivity of graphene/polyimide hybrid film via a novel “molecular welding” strategy[J]. Carbon,2018,126:319-327. doi: 10.1016/j.carbon.2017.10.044
    [50]
    Miao J, Li H, Qiu H, et al. Graphene/PANI hybrid film with enhanced thermal conductivity by in situ polymerization[J]. Journal of Materials Science,2018:1-11.
    [51]
    Wu X, Li H, Cheng K, et al. Modified graphene/polyimide composite films with strongly enhanced thermal conductivity[J]. Nanoscale,2019,11(17):8219-8225. doi: 10.1039/C9NR02117E
    [52]
    Wang K, Li M, Zhang J, et al. Polyacrylonitrile coupled graphite oxide film with improved heat dissipation ability[J]. Carbon,2019,144:249-258. doi: 10.1016/j.carbon.2018.12.027
    [53]
    Song N J, Chen C M, Lu C, et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. Journal of Materials Chemistry A,2014,2(39):16563-16568. doi: 10.1039/C4TA02693D
    [54]
    Paliotta L, De Bellis G, Tamburrano A, et al. Highly conductive multilayer-graphene paper as a flexible lightweight electromagnetic shield[J]. Carbon,2015,89:260-271. doi: 10.1016/j.carbon.2015.03.043
    [55]
    Wang B, Cunning B V, Kim N Y, et al. Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order[J]. Advanced Materials,2019,31(29):e1903039. doi: 10.1002/adma.201903039
    [56]
    Zeng Y, Li T, Yao Y, et al. Thermally conductive reduced graphene oxide thin films for extreme temperature sensors[J]. Advanced Functional Materials,2019:1901388. doi: 10.1002/adfm.201901388
    [57]
    Zhong J, Sun W, Wei Q, et al. Efficient and scalable synthesis of highly aligned and compact two-dimensional nanosheet films with record performances[J]. Nature Communications,2018,9(1):3484. doi: 10.1038/s41467-018-05723-2
    [58]
    Pop E, Varshney V, Roy A K. Thermal properties of graphene: Fundamentals and applications[J]. MRS Bulletin,2012,37(12):1273-1281. doi: 10.1557/mrs.2012.203
    [59]
    Hu S, Chen J, Yang N, et al. Thermal transport in graphene with defect and doping: Phonon modes analysis[J]. Carbon,2017,116:139-144. doi: 10.1016/j.carbon.2017.01.089
    [60]
    Chen S, Wu Q, Mishra C, et al. Thermal conductivity of isotopically modified graphene[J]. Nature Materials,2012,11(3):203-207. doi: 10.1038/nmat3207
    [61]
    Kim T Y, Park C H, Marzari N. The electronic thermal conductivity of graphene[J]. Nano Letters,2016,16(4):2439-2443. doi: 10.1021/acs.nanolett.5b05288
    [62]
    Xie Z X, Zhang Y, Zhang L F, et al. Effect of topological line defects on electron-derived thermal transport in zigzag graphene nanoribbons[J]. Carbon,2017,113:292-298. doi: 10.1016/j.carbon.2016.11.065
    [63]
    Islam M S, Tanaka S, Hashimoto A. Effect of vacancy defects on phonon properties of hydrogen passivated graphene nanoribbons[J]. Carbon,2014,80:146-154. doi: 10.1016/j.carbon.2014.08.049
    [64]
    Tan S H, Tang L M, Xie Z X, et al. Effect of pentagon–heptagon defect on thermal transport properties in graphene nanoribbons[J]. Carbon,2013,65:181-186. doi: 10.1016/j.carbon.2013.08.012
    [65]
    Li M, Deng T, Zheng B, et al. Effect of defects on the mechanical and thermal properties of graphene[J]. Nanomaterials (Basel),2019,9(3
    [66]
    Thomas J A, Iutzi R M, McGaughey A J H. Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes[J]. Physical Review B,2010,81(4):045413. doi: 10.1103/PhysRevB.81.045413
    [67]
    Qiu L, Zhang X, Guo Z, et al. Interfacial heat transport in nano-carbon assemblies[J]. Carbon,2021,178:391-412. doi: 10.1016/j.carbon.2021.02.105
    [68]
    Nika D L, Askerov A S, Balandin A A. Anomalous size dependence of the thermal conductivity of graphene ribbons[J]. Nano Letters,2012,12(6):3238-3244. doi: 10.1021/nl301230g
    [69]
    Xu X, Pereira L F, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications,2014,5:3689. doi: 10.1038/ncomms4689
    [70]
    Park M, Lee S C, Kim Y S. Length-dependent lattice thermal conductivity of graphene and its macroscopic limit[J]. Journal of Applied Physics,2013,114(5):053506. doi: 10.1063/1.4817175
    [71]
    Lee W, Kihm K D, Kim H G, et al. In-plane thermal conductivity of polycrystalline chemical vapor deposition graphene with controlled grain sizes[J]. Nano Letters,2017,17(4):2361-2366. doi: 10.1021/acs.nanolett.6b05269
    [72]
    Ma T, Liu Z, Wen J, et al. Tailoring the thermal and electrical transport properties of graphene films by grain size engineering[J]. Nature Communications,2017,8:14486. doi: 10.1038/ncomms14486
    [73]
    Kumar P, Shahzad F, Yu S, et al. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness[J]. Carbon,2015,94:494-500. doi: 10.1016/j.carbon.2015.07.032
    [74]
    Cao H Y, Guo Z X, Xiang H, et al. Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons[J]. Physics Letters A,2012,376(4):525-528. doi: 10.1016/j.physleta.2011.11.016
    [75]
    Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science,2010,328(5975):213-216. doi: 10.1126/science.1184014
    [76]
    Guo Z X, Zhang D, Gong X G. Manipulating thermal conductivity through substrate coupling[J]. Physical Review B,2011,84(7):075470. doi: 10.1103/PhysRevB.84.075470
    [77]
    Renteria J D, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials,2015,25(29):4664-4672. doi: 10.1002/adfm.201501429
    [78]
    Shen T Z, Hong S H, Song J K. Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient[J]. Nature materials,2014,13(4):394. doi: 10.1038/nmat3888
    [79]
    Zhai P, Wang Y, Liu C, et al. Electric-field-tunable conductivity in graphene/water and graphene/ice systems[J]. Small,2017,13(39):1701149. doi: 10.1002/smll.201701149
    [80]
    Song N J, Lu C X, Chen C M, et al. Effect of annealing temperature on the mechanical properties of flexible graphene films[J]. New Carbon Materials,2017,32(3):221-226. doi: 10.1016/S1872-5805(17)60119-7
    [81]
    Chen C M, Huang J Q, Zhang Q, et al. Annealing a graphene oxide film to produce a free standing high conductive graphene film[J]. Carbon,2012,50(2):659-667. doi: 10.1016/j.carbon.2011.09.022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article Views(2129) PDF Downloads(416) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return