Volume 37 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
ZHAO Lu, TANG Jiang, ZHOU Min, SHEN Ke. A review of the coefficient of thermal expansion and thermal conductivity of graphite. New Carbon Mater., 2022, 37(3): 544-555. doi: 10.1016/S1872-5805(22)60603-6
Citation: ZHAO Lu, TANG Jiang, ZHOU Min, SHEN Ke. A review of the coefficient of thermal expansion and thermal conductivity of graphite. New Carbon Mater., 2022, 37(3): 544-555. doi: 10.1016/S1872-5805(22)60603-6

A review of the coefficient of thermal expansion and thermal conductivity of graphite

doi: 10.1016/S1872-5805(22)60603-6
Funds:  This study was supported by the National Natural Science Foundation of China (51872083)
More Information
  • Author Bio:

    赵 露,博士研究生. E-mail:zhaolou17@mails.tsinghua.edu.cn

  • Corresponding author: SHEN Ke, Professor. E-mail: shenk@hnu.edu.cn
  • Received Date: 2021-08-11
  • Rev Recd Date: 2022-01-24
  • Available Online: 2022-03-04
  • Publish Date: 2022-06-01
  • Graphite serves as a key material for heat dissipation in electronic devices and nuclear engineering due to its remarkable thermal properties. The thermal expansion and conductivity of graphite have always been major scientific parameters in the field of carbon materials. Therefore, theoretical and experimental research in this area has received extensive attention. Research progress on the thermal expansion coefficient and thermal conductivity of graphite crystals is reviewed. Theoretical and experiment results on the thermal expansion coefficient of graphite are first introduced, followed by a discussion of the methods for measuring graphite thermal conductivity and the special phonon scattering mechanism in graphite. Finally, the uses of graphite in thermal management are summarized, and the development prospects in this field are discussed.
  • loading
  • [1]
    Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics[J]. Materials Today,2014,17:163-174. doi: 10.1016/j.mattod.2014.04.003
    [2]
    Pop E. Energy dissipation and transport in nanoscale devices[J]. Nano Research,2010,3:147-169. doi: 10.1007/s12274-010-1019-z
    [3]
    Yan Z, Liu G, Khan J M, et al. Graphene quilts for thermal management of high-power GaN transistors[J]. Nature Communications,2012,3:1-8.
    [4]
    Edwards I, Marsh H, Menendez R. Introduction to Carbon Science [M]. Butterworth-Heinemann, 1989.
    [5]
    Xu X, Pereira L, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications,2014,5:3689. doi: 10.1038/ncomms4689
    [6]
    Lee S, Broido D, Esfarjani K, et al. Hydrodynamic phonon transport in suspended graphene[J]. Nature Communications,2015,6:6290. doi: 10.1038/ncomms7290
    [7]
    Cepellotti A, Fugallo G, Paulatto L, et al. Phonon hydrodynamics in two-dimensional materials[J]. Nature Communications,2015,6:6400. doi: 10.1038/ncomms7400
    [8]
    Feng T, Ruan X. Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons[J]. Physical Review B,2018,97:045202. doi: 10.1103/PhysRevB.97.045202
    [9]
    Gu X, Fan Z, Bao H, et al. Revisiting phonon-phonon scattering in single-layer graphene[J]. Physical Review B,2019,100:064306. doi: 10.1103/PhysRevB.100.064306
    [10]
    Nelson J B, Riley D P. The thermal expansion of graphite from 15 °C to 800 °C: Part II. Theoretical[J]. Proceedings of the Physical Society (1926-1948),1945,57(6):486. doi: 10.1088/0959-5309/57/6/304
    [11]
    Steward E G, Cook B P. X-ray measurement of thermal expansion perpendicular to the layer planes of artificial and natural graphites[J]. Nature,1960,185:78-80.
    [12]
    Harrison J W. Absolute measurements of the coefficient of thermal expansion of pyrolytic graphite from room temperature to 1200 K and a comparison with current theory[J]. High temperatures-High Pressures,1977,9:211-229.
    [13]
    Morgan W C. Thermal expansion coefficients of graphite crystals[J]. Carbon,1972,10:73-79. doi: 10.1016/0008-6223(72)90011-5
    [14]
    Riley D P. The thermal expansion of graphite: part II. Theoretical[J]. Proceedings of the Physical Society (1926-1948),2002,57:486.
    [15]
    Tsang D K, Marsden B J, Fok S L, et al. Graphite thermal expansion relationship for different temperature ranges[J]. Carbon,2005,43:2902-2906. doi: 10.1016/j.carbon.2005.06.009
    [16]
    Mounet N, Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[J]. Physical Review B,2005,71:205214. doi: 10.1103/PhysRevB.71.205214
    [17]
    Boi F S, Liu M, Xia J, et al. Temperature driven anomalous unit-cell c-axis shifts in highly oriented pyrolytic graphite measured at the magic-angle[J]. Carbon,2019,145:690-693. doi: 10.1016/j.carbon.2019.01.066
    [18]
    Kellett E A, Richards B P. The thermal expansion of graphite within the layer planes[J]. Journal of Nuclear Materials,1964,12:184-192. doi: 10.1016/0022-3115(64)90139-4
    [19]
    Akikubo K, Kurahashi T, Kawaguchi S, et al. Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction[J]. Carbon,2020,169:307-311. doi: 10.1016/j.carbon.2020.07.027
    [20]
    Mag-isa A E, Kim J, Oh C. Measurements of the in-plane coefficient of thermal expansion of freestanding single-crystal natural graphite[J]. Materials Letters,2016,171:312-314. doi: 10.1016/j.matlet.2016.02.110
    [21]
    Weast Robert C. CRC Handbook of Chemistry and Physics [M]. CRC handbook of chemistry and physics, 1988.
    [22]
    Ho C Y, Powell R W, Liley P E. Thermal conductivity of the elements[J]. Journal of Physical and Chemical Reference Data,1972,1:279-421. doi: 10.1063/1.3253100
    [23]
    Touloukian Y S, Powell R W, Ho C Y, et al. (Thermophysical and Electronic Properties Information Analysis Center, 1971).
    [24]
    Taylor R. The thermal conductivity of pyrolytic graphite[J]. Philosophical Magazine,1966,13:157-166. doi: 10.1080/14786436608211993
    [25]
    Nihira T, Iwata T. Thermal resistivity changes in electron-irradiated pyrolytic graphite[J]. Japanese Journal of Applied Physics,1975,14:1099. doi: 10.1143/JJAP.14.1099
    [26]
    Schmidt A J. Massachusetts Institute of Technology [M]. 2008.
    [27]
    Feser J P, Cahill D G. Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots[J]. Review of Scientific Instruments,2012,83:104901. doi: 10.1063/1.4757863
    [28]
    Jiang P, Qian X, Yang R. Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach[J]. Review of Scientific Instruments,2017,88:074901. doi: 10.1063/1.4991715
    [29]
    Qian X, Ding Z, Shin J, et al. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance[J]. Review of Scientific Instruments,2020,91:064903. doi: 10.1063/5.0003770
    [30]
    Taylor R, Gilchrist K E, Poston, L J. Thermal conductivity of polycrystalline graphite[J]. Carbon,1968,6:537-544. doi: 10.1016/0008-6223(68)90093-6
    [31]
    Taylor R, Kelly B T, Gilchrist K E. The thermal conductivity of fast neutron irradiated graphite[J]. Journal of Physics and Chemistry of Solids,1969,30:2251-2267. doi: 10.1016/0022-3697(69)90152-8
    [32]
    Maruyama T, Harayama M. Neutron irradiation effect on the thermal conductivity and dimensional change of graphite materials[J]. Journal of Nuclear Materials,1992,195:44-50. doi: 10.1016/0022-3115(92)90362-O
    [33]
    Hooker C N, Ubbelohde A R, Young D A. Anisotropy of thermal conductance in near-ideal graphite[J]. Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences,1965,284:17-31.
    [34]
    Slack G A. Anisotropic thermal conductivity of pyrolytic graphite[J]. Physical Review,1962,127:694-701. doi: 10.1103/PhysRev.127.694
    [35]
    Issi J, Heremans J, Dresselhaus M S. Electronic and lattice contributions to the thermal conductivity of graphite intercalation compounds[J]. Physical Review B,1983,27:1333. doi: 10.1103/PhysRevB.27.1333
    [36]
    Boxus J, Poulaert B, Issi J P, et al. Low temperature thermal conductivity of graphite-FeCl3 intercalation compounds[J]. Solid State Communications,1981,38:1117-1119. doi: 10.1016/0038-1098(81)90969-8
    [37]
    Ghosh S, Bao W, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature materials,2010,9:555-558. doi: 10.1038/nmat2753
    [38]
    Sadeghi M M, Jo I, Shi L. Phonon-interface scattering in multilayer graphene on an amorphous support[J]. Proceedings of the National Academy of Sciences,2013,110:16321-16326. doi: 10.1073/pnas.1306175110
    [39]
    Jang W, Chen Z, Bao W, et al. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite[J]. Nano Letters,2010,10:3909-3913. doi: 10.1021/nl101613u
    [40]
    Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science,2010,328:213-216. doi: 10.1126/science.1184014
    [41]
    Lindsay L, Broido D A, Mingo N. Flexural phonons and thermal transport in graphene[J]. Physical Review B,2010,82:115427. doi: 10.1103/PhysRevB.82.115427
    [42]
    Machida Y, Matsumoto N, Isono T, et al. Phonon hydrodynamics and ultrahigh-room-temperature thermal conductivity in thin graphite[J]. Science,2020,367:309-312. doi: 10.1126/science.aaz8043
    [43]
    Wang N, Samani M K, Li H, et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering[J]. Small,2018,14:1801346. doi: 10.1002/smll.201801346
    [44]
    Murakami M, Nishiki N, Nakamura K, et al. High-quality and highly oriented graphite block from polycondensation polymer films[J]. Carbon,1992,30:255-262. doi: 10.1016/0008-6223(92)90088-E
    [45]
    Fugallo G, Cepellotti A, Paulatto L, et al. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths[J]. Nano Letters,2014,14:6109-6114. doi: 10.1021/nl502059f
    [46]
    Wei Z, Yang J, Chen W, et al. Phonon mean free path of graphite along the c-axis[J]. Applied Physics Letters,2014,104:081903. doi: 10.1063/1.4866416
    [47]
    Harb M, von Korff Schmising C, Enquist H, et al. The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction[J]. Applied Physics Letters,2012,101:233108. doi: 10.1063/1.4769214
    [48]
    Zheng Q, Braun P V, Cahill D G. Thermal conductivity of graphite thin films grown by low temperature chemical vapor deposition on Ni (111)[J]. Advanced Materials Interfaces,2016,3:1600234. doi: 10.1002/admi.201600234
    [49]
    Fu Q, Yang J, Chen Y, et al. Experimental evidence of very long intrinsic phonon mean free path along the c-axis of graphite[J]. Applied Physics Letters,2015,106:031905. doi: 10.1063/1.4906348
    [50]
    Zhang H, Chen X, Jho Y, et al. Temperature-dependent mean free path spectra of thermal phonons along the c-axis of graphite[J]. Nano Letters,2016,16:1643-1649. doi: 10.1021/acs.nanolett.5b04499
    [51]
    Peng L, Xu Z, Liu Z, et al. Ultrahigh Thermal conductive yet superflexible graphene films[J]. Advanced Materials,2017,29:1700589. doi: 10.1002/adma.201700589
    [52]
    Wang B, Cunning B V, Kim N Y, et al. Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order[J]. Advanced Materials,2019,31:1903039. doi: 10.1002/adma.201903039
    [53]
    Akbari A, Cunning B V, Joshi S R, et al. Highly Ordered and dense thermally conductive graphitic films from a graphene oxide/reduced graphene oxide mixture[J]. Matter,2020,2:1198-1206. doi: 10.1016/j.matt.2020.02.014
    [54]
    Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials,2014,26:4521-4526. doi: 10.1002/adma.201400951
    [55]
    Chen S, Wang Q, Zhang M, et al. Scalable production of thick graphene film for next generation thermal management application[J]. Carbon,2020,167:270-277. doi: 10.1016/j.carbon.2020.06.030
    [56]
    Renteria J D, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials,2015,25:4664-4672. doi: 10.1002/adfm.201501429
    [57]
    Inagaki M, Kaburagi Y, Hishiyama Y. Thermal management material: Graphite[J]. Advanced Engineering Materials,2014,16:494-506. doi: 10.1002/adem.201300418
    [58]
    Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials,2014,24:4542-4548. doi: 10.1002/adfm.201400079
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article Views(2114) PDF Downloads(266) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return